单片机

单片机(Microcontroller, MCU)是一种集成了计算机功能的微型计算机,通常由一个微处理器(CPU)、存储器(ROM、RAM)、输入/输出接口、定时器/计数器等功能模块集成在同一芯片上。单片机是一种常用于嵌入式系统中的控制器,它被广泛应用于家电、汽车、工业自动化、医疗设备、消费电子、物联网(IoT)设备等多个领域。

对电磁干扰的设计我们主要从硬件和软件方面进行设计处理,下面就是从单片机的PCB设计到软件处理方面来介绍对电磁兼容性的处理。

一、影响EMC的因数
  
1、电压
  
电源电压越高,意味着电压振幅越大,发射就更多,而低电源电压影响敏感度。
  
2、频率
  
高频产生更多的发射,周期性信号产生更多的发射。在高频单片机系统中,当器件开关时产生电流尖峰信号;在模拟系统中,当负载电流变化时产生电流尖峰信号。
  
3、接地
  
在所有EMC题目中,主要题目是不适当的接地引起的。有三种信号接地方法:单点、多点和混合。在频率低于1MHz时,可采用单点接地方法,但不适宜高频;在高频应用中,最好采用多点接地。混合接地是低频用单点接地,而高频用多点接地的方法。地线布局是关键,高频数字电路和低电平模拟电路的接地电路尽不能混合。
  
4、PCB设计
  
适当的印刷电路板(PCB)布线对防止EMI是至关重要的。
  
5、电源往耦
  
当器件开关时,在电源线上会产生瞬态电流,必须衰减和滤掉这些瞬态电流。来自高di/dt源的瞬态电流导致地和线迹“发射”电压,高di/dt产生大范围的高频电流,激励部件和线缆辐射。流经导线的电流变化和电感会导致压降,减小电感或电流随时间的变化可使该压降最小。
  
二、对干扰措施的硬件处理方法
  
1、印刷线路板(PCB)的电磁兼容性设计
  
PCB是单片机系统中电路元件和器件的支撑件,它提供电路元件和器件之间的电气连接。随着电子技术的飞速发展,PCB的密度越来越高。PCB设计的好坏对单片机系统的电磁兼容性影响很大,实践证实,即使电路原理图设计正确,印刷电路板设计不当,也会对单片机系统的可靠性产生不利影响。例如,假如印刷电路板的两条细平行线靠的很近,会形成信号波形的延迟,在传输线的终端形成反射噪声。因此,在设计印刷电路板的时候,应留意采用正确的方法,遵守PCB设计的一般原则,并应符合抗干扰的设计要求。要使电子电路获得最佳性能,元器件的布局及导线的布设是很重要的。
  
2、输入/输出的电磁兼容性设计
  
在单片机系统中输进/输出也是干扰源的传导线,和接收射频干扰信号的拾检源,我们设计时一般要采取有效的措施:
  
①采用必要的共模/差模抑制电路,同时也要采取一定的滤波和防电磁屏蔽措施以减小干扰的进进。
  
②在条件许可的情况下尽可能采取各种隔离措施(如光电隔离或者磁电隔离),从而阻断干扰的传播。
  
3、单片机复位电路的设计
  
在的单片机系统中,看门狗系统对整个单片机的运行起着特别重要的作用,由于所有的干扰源不可能全部被隔离或往除,一旦进进CPU干扰程序的正常运行,那么复位系统结合软件处理措施就成了一道有效的纠错防御的屏障了。常用的复位系统有以下两种:
  
①外部复位系统。外部“看门狗”电路可以自己设计也可以用专门的“看门狗”芯片来搭建。然而,他们各有优缺点,大部分专用“看门狗”芯片对低频“喂狗”信号不能响应,而高频“喂狗”信号都能响应,使其在低频“喂狗”信号下产生复位动作而在高频的“喂狗”信号下不产生复位动作,这样,假如程序系统陷进一个死循环,而该循环中恰巧有着“喂狗”信号的话,那么该复位电路就无法实现它的应有的功能了。然而,我们自己可以设计一个具有带通的“喂狗”电路和其他复位电路构成的系统就是一个很有效外部监控系统了。
  
②现在越来越多的单片机都带有自己的片上复位系统,这样用户就可以很方便的使用其内部的复位定时器了,但是,有一些型号的单片机它的复位指令太过于简单,这样也会存在象上述死循环那样的“喂狗”指令,使其失往监控作用。有一些单片机的片上复位指令就做的比较好,一般他们把“喂狗”信号做成固定格式的多条指令依顺序来执行,假如有一定错误则该“喂狗”操纵无效,这样就大大进步了复位电路的可靠性。
  
4、振荡器
  
大部分的单片机都有一个耦合于外部晶体或陶瓷谐振器的振荡器电路。在PCB上,要求外接是电容、晶体或陶瓷谐振器的引线越短越好。RC振荡器对干扰信号有潜伏的敏感性,它能产生很短的时钟周期,因而最好选晶体或陶瓷谐振器。另外,石英晶体的外壳要接地。
  
5、防雷击措施
  
室外使用的单片机系统或从室外排挤引进室内的电源线、信号线,要考虑系统的防雷击题目。常用的防雷击器件有:气体放电管、TVS(Transient Voltage Suppression)等。气体放电管是当电源的电压大于某一数值时,通常为数十V或数百V,气体击穿放电,将电源线上强冲击脉冲导进大地。TVS可以看成两个并联且方向相反的齐纳二极管,当两端电压高于某一值时导通。其特点是可以瞬态通过数百乃上千A的电流。

来源:互联网

围观 350

“分层思想”并不是什么神秘的东西,事实上很多做项目的工程师本身自己也会在用。看了不少帖子都发现没有提及这个东西,然而分层结构确是很有用的东西,参透后会有一种恍然大悟的感觉。如果说我不懂LCD怎么驱动,那好办,看一下datasheet,参考一下别人的程序,很快就可以做出来。但是如果不懂程序设计的思想的话,会给你做项目的过程中带来很多很多的困惑。

参考了市面上各种各样的嵌入式书籍,MCS-51,AVR ,ARM 等都有看过,但是没有发现有哪本是介绍设计思想的,就算有也是凤毛麟角。写程序不难,但是程序怎么样才能写的好,写的快,那是需要点经验积累的。结构化模块化的程序设计的思想,是最基本的要求。然而怎么将这个抽象的概念运用到工程实践当中呢?那需要在做项目的过程中经历磨难,将一些东西总结出来,抽象升华为理论,对经验的积累和技术的传播都大有裨益。所以在下出来献丑一下,总结一些东西。就我个人的经验而谈,有两个设计思想是非常重要的。

一个就是“时间片轮的设计思想”,这个对实际中解决多任务问题非常有用,通常可以用这个东西来判断一个人是单片机学习者,还是一个单片机工程师。这个必须掌握。由于网上介绍这个的帖子也不少,所以这里就不多说了。

第二个就是我今天想说的主题“分层屏蔽的设计思想”。下面用扫描键盘程序例子作为引子,引出今天说的东西。

问题的提出 :单片机学习板一般为了简单起见,将按键分配的很好,例如整个 4*4 的键盘矩阵分配到P1口上面,8条控制线,刚好。这样的话程序也非常好写。只需要简单的

KEY_DAT = P1;

端口的数据就读进来了。诚然,现实中没有这么好的事情。在实际的项目应用当中,单片机引脚的复用相当厉害,这跟那些所谓的单片机学习板就有很大的差别了。

另外一个原因,一般设计来说,是“软件配合硬件”的设计流程,简单点说就是,先确定好硬件原理图,硬件布线,最后才是软件的开发,因为硬件修改起来比较麻烦,相对来说软件修改的时候比较好改。这个就是中国传统的阴阳平衡哲学原理。硬件设计和软件设计本来就是鱼和熊掌的关系,两者不可兼得。方便了硬件设计,很可能给写软件带来很大的麻烦。反过来说,方便了软件设计,硬件设计也会相当的麻烦。如果硬件设计和软件设计同时方便了,那只有两种可能,一是这个设计方案非常简单,二是设计师已经达到了一个非常高的境界。我们不考虑那么多情况,单纯从常用的实际应用的角度来看问题。 硬件为了布线的方便,很多时候会可能将IO口分配到不同的端口上面,例如上面说的4*4键盘,8根线分别分配到 P0 P1 P2 P3 上面去了。那么,开发板的那些扫描键盘程序可以去见鬼了。怎么扫按键?我想起了我刚开始学习的时候,分成3段非常相似的程序,一个一个按键的扫描的经历...... 或许有人不甘心,“那些东西我花了很长时间学习的,也用的好好的,怎么能说一句不用就不用?”虽然有点残忍,但是我还是想说“兄弟,接受现实吧,现实是残酷的......”

不过,人区别于低等动物的差别,是人会创造,在碰到困难的时候会想办法解决,于是我们开始了沉思...... 后我们引入初中数学学的“映射”的概念来解决问题。基本思想就是,将不同端口的按键映射到相同端口上面。

这样按键扫描程序就分成3个层次了。

(1)最底层的是硬件层,完成端口扫描,20ms延时消抖,将端口的数据映射到一个KEY_DAT寄存器上面,KEY_DAT作为对上层驱动层的一个接口。

(2)中间的一层是驱动层,驱动层只对 KEY_DAT 寄存器的数值进行操作。简单点说,我们无论底层的硬件是怎么接线的,在驱动层都不需要关心,只需要关心 KEY_DAT 这个寄存器的数值是什么就可以了。这样出来的间接效果就是“屏蔽了底层硬件的差异”,所以驱动层写的程序就可以通用了。驱动层的另外一个功能是为了上层提供消息接口。我们用了类似window程序的消息的概念。这里可以提供一些按键消息,例如:按下消息,松开消息,长按键消息,长按键的时候的步进消息,等等。

(3)应用层。这里就是根据项目的不同分别写按键功能程序,属于最上层的程序。它使用的是驱动层提供的消息接口。在应用层写程序的思想就是,我不管下层是怎么工作的,我只关心按键消息。有按键消息来的时候我就执行功能,没有消息来的时候,我就什么也不做。

下面用一个简单的常用的例子,说明我们这个设计思想的用法。秒表调整时间的时候,要求按着某个按键不放,时间能连续的向上增加。这个东西很实用,实际的家电中用途很广泛。在看下面的东西之前,大家可以想一下,这东西难吗?相信大家都会很响亮的回答,“不难!!”,然而我再问:“这东西麻烦吗?”我相信很多人肯定会说“很麻烦!!” 这不禁让我想起开始学单片机的时候写这种按键的那程序,乱七八糟的结构。如果不相信的话,可以自己用51写一下哦,那样就更加能体会本文说的分层结构的优越性。

项目要求:两个按键,分别分配在P10 和P20,分别是“加”“减”按键,要求长按键的时候实现连续加和连续减的功能。

实战:假设:按键上拉,没有按键的时候高电平,有按键的时候低电平,另外,为了突出问题,这里没有将延时消抖的程序写上去,在实际项目中应该加上。C语言函数参数的传递多种多样,这里作为例子,用了最简单的全局变量来传递参数,当然你也可以用 unsigned char ReadPort(void) 返回一个读键结果,甚至还可以 void ReadPort(unsigned char *pt) 用一个指针变量传递地址而达到直接修改变量的目的。方法是多种多样的,这个决定于每个人的程序风格。

(1)开始写硬件层程序,完成映射

#define KYE_MIN 0X01

#define KEY_PLUS 0X01

unsigned char KeyDat;

void ReadPort(void)

{

if (P1 & KEY_PLUS == 0 ){

KeyDat |= 0x01 ;

}

if (P2 & KEY_MIN == 0 ){

KeyDat |= 0x02 ;

}

}

C语言应该很容易看懂吧?如果 KEY_PLUS 按下,P10口读到低电平,则 P1 & KEY_PLUS 的结果为 0 ,满足if 的条件,进入KeyDat |= 0x01 是将 KeyDat 的bit0 置一,也就是说,将 KEY_PLUS 映射到 KeyDat 的 bit0

KEY_MIN 是同样的道理映射到 KeyDat 的 bit1

如果 KeyDat 的 bit0 为 1 ,则说明 KEY_PLUS 按下,反则亦然。

不需要想的很神秘,映射就是这么一回事。如果还有其他按键的话,用同样办法,将他们全部映射到 KeyDat 上面。

(2)驱动层程序编写

硬件层给驱动层提供最基本的一些屏蔽掉底层的一些硬件的相关数据,这样可以把硬件层的数据结构(比如这里是KeyDat)提供给驱动层,驱动层负责调用硬件层,应用层负责调用驱动层

如果将 KeyDat想象成 P1 口,那么这个跟学习板那标准的扫描程序不就是一样了吗?对的,这个就是底层映射的目的了。

(3)应用层程序编写

根据消息,硬件层是必须分离出来,然而驱动层和应用层的要求就不那么严格了,事实上一些简单的项目没有必要将这两层分离开来,根据实际应用灵活应对就可以了。其实这样写程序是很方便移植的,根据板子的不同而适当的修改一下硬件层那个 ReadPort 函数就完成了,驱动层和应用层很多代码可以不经过修改直接用,很能提高开发效率的。当然这个按键程序会存在一定的问题,特别是遇到常闭按键和点触按键的混合使用的场合。这个留给大家自己去想了,反正问题总是能找到解决办法的,尽管方法有好有坏。

结束语

以按键为媒介,介绍了程序设计当中的“分层屏蔽”的思想的原理和应用,按键只是一个例子,其实分层的思想普遍存在着程序设计当中。细心留意一下的话发现其实window,linux,网络的tcp/ip 结构全部都是分层的。这东西不是绣花枕头,而是实际用在工程上面的,只是平时不多见帖子介绍,或者没有人特意这样来总结,又或者是有经验的工程师作为藏在心中的法宝吧,这个就不得而知。不过好东西应该共享,菜鸟应该共勉,一起来学飞吧。

来源:互联网

围观 461

很多学习电子电路设计的朋友都会涉及到单片机的开发,网络上有很多关于单片学习开发的资料,但是这些资料当中或多或少都会涉及一些比较专业的名词和概念,电路设计初学者看不明白,学习起来也比较困难,本篇文章就对单片机开发过程中所要涉及到的几个概念进行介绍,希望能对新手有所帮助。

1、什么是DSP中的“内部上拉”和“内部下拉”?

DSP中介绍引脚时,注明PU,PD说是“内部上拉”和“内部下拉”,就是说内部已经配置了接电源的上拉电阻或是接地的下拉电阻。这样,当作为输入端口连接OC或COMS芯片或浮空时。信号线平是确定的高/低电平。而不是不确定的浮地电平。内部上拉,相当于输入和电源之间接了一个几十K的电阻;下拉,相当于用电阻和地相连。

2、VCC,VDD,VSS是什么?

在电子电路中,VCC是电路的供电电压,C = circuit,表示电路的意思;VDD是芯片的工作电压,D = device,表示器件的意思;VSS是接地或是负极,S = series,表示公共连接的意思。

3、时钟周期、指令周期、机器周期、总线周期都是什么东东?

时钟周期:

也称为振荡周期,定义为时钟脉冲的倒数(时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时钟周期就是1/12us),是计算机中的最基本的、最小的时间单位。在一个时钟周期内,CPU仅完成一个最基本的动作。时钟脉冲是计算机的基本工作脉冲,控制着计算机的工作节奏。时钟频率越高,工作速度就越快。

指令周期:

执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期也不同。

机器周期:

计算机中,常把一条指令的执行过程划分为若干个阶段,每一个阶段完成一项工作。每一项工作称为一个基本操作,完成一个基本操作所需要的时间称为机器周期。

总线周期:

微处理器是在时钟信号CLK控制下按节拍工作的。8086/8088系统的时钟频率为4.77MHz,每个时钟周期约为200ns。由于存贮器和I/O端口是挂接在总线上的,CPU对存贮器和I/O接口的访问,是通过总线实现的。通常把CPU通过总线对微处理器外部(存贮器或 I/O接口)进行一次访问所需时间称为一个总线周期。一个总线周期一般包含4个时钟周期,这4个时钟周期分别称4个状态即T1状态、T2状态、T3状态和 T4状态。

本篇文章针对新手,讲解了涉及单片机设计之初的一些概念。希望能够帮助新手们更容易的入门,早日对单片机涉及得心应手。

围观 413

作者:NK_test

通过采用C#语言实现的上位机控制单片机的步进电机模块、LED灯和蜂鸣器模块,使步进电机进行正、反转和停止并控制转速;LED灯模块进行有选择的呼吸式表达;蜂鸣器模块的开始和终止。

上位机通过串口和自定义的通信协议(8字节)控制单片机的步进电机、LED灯和蜂鸣器模块。其中在控制步进电机的过程中,为了使操作能够及时响应,使用了INT0中断来进行及时性速度响应;LED灯使用位运算控制灯的闪烁位置,合理利用了单片机的模块和操作。

注意:由于定时器个数的限制,没能控制更多的模块。

#include

sbit WEI=P2^7;
sbit DUAN=P2^6;
#define DataPort P0

unsigned char code dofly_DuanMa[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x40};// 显示段码值0~9
unsigned char code dofly_WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码
unsigned char TempData[8]; //存储显示值的全局变量
sbit SPK1=P1^4;

void delay(int t)
{
while(t--);
}

sbit A1=P1^0; //定义步进电机连接端口
sbit B1=P1^1;
sbit C1=P1^2;
sbit D1=P1^3;

#define Coil_AB1 {A1=1;B1=1;C1=0;D1=0;}//AB相通电,其他相断电
#define Coil_BC1 {A1=0;B1=1;C1=1;D1=0;}//BC相通电,其他相断电
#define Coil_CD1 {A1=0;B1=0;C1=1;D1=1;}//CD相通电,其他相断电
#define Coil_DA1 {A1=1;B1=0;C1=0;D1=1;}//D相通电,其他相断电
#define Coil_A1 {A1=1;B1=0;C1=0;D1=0;}//A相通电,其他相断电
#define Coil_B1 {A1=0;B1=1;C1=0;D1=0;}//B相通电,其他相断电
#define Coil_C1 {A1=0;B1=0;C1=1;D1=0;}//C相通电,其他相断电
#define Coil_D1 {A1=0;B1=0;C1=0;D1=1;}//D相通电,其他相断电
#define Coil_OFF {A1=0;B1=0;C1=0;D1=0;}//全部断电

unsigned char Speed;
unsigned char dir=0;
unsigned char code rst[]={0xe4,0xc0,0xe0,0xc0,0xe0,0x32}; // 复位代码
void Init_Timer0(void);
void DelayUs2x(unsigned char t)
{
while(--t);
}

void DelayMs(unsigned char t)
{

while(t--)
{
//大致延时1mS
DelayUs2x(245);
DelayUs2x(245);
}
}

void Display(unsigned char FirstBit,unsigned char Num)
{
static unsigned char i=0;

DataPort=0; //清空数据,防止有交替重影
DUAN=1; //段锁存
DUAN=0;

DataPort=dofly_WeiMa[i+FirstBit]; //取位码
WEI=1; //位锁存
WEI=0;

DataPort=TempData[i]; //取显示数据,段码
DUAN=1; //段锁存
DUAN=0;

i++;
if(i==Num)
i=0;

}

void Rorate()
{
unsigned int i=512;//旋转一周时间
Init_Timer0();

EA=1; //全局中断开
EX0=1; //外部中断0开
IT0=1; //1表示边沿触发

//Speed=speed;
TempData[0]=dofly_DuanMa[Speed/10];//分解显示信息,如要显示68,
TempData[1]=dofly_DuanMa[Speed%10];//则68/10=6 68%10=8
Coil_OFF
while(i--&&dir==0) //正向
{
Coil_A1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
Coil_AB1 //遇到Coil_AB1 用{A1=1;B1=1;C1=0;D1=0;}代替
DelayMs(Speed); //改变这个参数可以调整电机转速 ,
P3=0xeb;
P3=0xff; //数字越小,转速越大,力矩越小
Coil_B1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
Coil_BC1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
Coil_C1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
Coil_CD1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
Coil_D1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
Coil_DA1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
}
Coil_OFF
i=512;

while((i--)&&dir)//反向
{
Coil_A1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
Coil_DA1 //遇到Coil_AB1 用{A1=1;B1=1;C1=0;D1=0;}代替
DelayMs(Speed); //改变这个参数可以调整电机转速 ,
P3=0xeb;
P3=0xff; //数字越小,转速越大,力矩越小
Coil_D1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
Coil_CD1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
Coil_C1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
Coil_BC1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
Coil_B1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
Coil_AB1
DelayMs(Speed);
P3=0xeb;
P3=0xff;
}

}

/*------------------------------------------------
串口初始化
------------------------------------------------*/
void InitUART (void)
{
SCON = 0x50; // SCON: 模式 1, 8-bit UART, 使能接收
TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit 重装
TH1 = 0xFD; // TH1: 重装值 9600 波特率 晶振 11.0592MHz
TR1 = 1; // TR1: timer 1 打开
EA = 1; //打开总中断
ES = 1; //打开串口中断
}

/*------------------------------------------------
主函数
------------------------------------------------*/

unsigned int judge[8];
int cnt=0;

void main (void)
{

InitUART();

ES= 1;//打开串口中断
while (1)
{

if(judge[0]==0xFF&&judge[1]==0xFE&&judge[6]==0xFD&&judge[7]==0xFC)
{
//(*((void (*)())(rst)))(); // ,将rst数组当函数调用,进行复位
if(judge[2]==0x00)//指定步进电机
{
P3=0xeb;
P3=0xff;
if(judge[5]!=0)
Rorate();
}
else if(judge[2]==0x01)//指定LED
{

unsigned int CYCLE=600,PWM_LOW=0;//定义周期并赋值

while (1) //主循环
{

WEI=0; //位锁存置0电平,防止LED亮的时候数码管亮
DUAN=0; //段锁存置0电平,防止LED亮的时候数码管亮
P0=0xFF;
delay(60000); //特意加延时,可以看到熄灭的过程
for(PWM_LOW=1;PWM_LOW //电平时间,这个循环中低电平时长从1累加到CYCLE(周期)的值,即600次

P0=judge[3]; //点亮LED
delay(PWM_LOW);//延时长度,600次循环中从1加至599
P0=0xFF; //熄灭LED
delay(CYCLE-PWM_LOW);//延时长度,600次循环中从599减至1

}
P0=judge[3];
for(PWM_LOW=CYCLE-1;PWM_LOW>0;PWM_LOW--){ //与逐渐变亮相反的过程

P0=judge[3];
delay(PWM_LOW);
P0=0xFF;
delay(CYCLE-PWM_LOW);

}

}

}
else if(judge[2]==0x02)
{
while(1)
{

DelayMs(1); //发出大约500Hz的方波 频率越大声音越尖
SPK1=!SPK1;

}
}
}
}
}

/*------------------------------------------------
串口中断程序
------------------------------------------------*/
void UART_SER (void) interrupt 4 //串行中断服务程序
{
unsigned char Temp; //定义临时变量

if(RI) //判断是接收中断产生
{
RI=0; //标志位清零
Temp=SBUF; //读入缓冲区的值

judge[cnt++]=Temp;
if(cnt==8||judge[0]!=0xFF)
cnt=0;

SBUF=Temp; //把接收到的值再发回电脑端
}
if(TI) //如果是发送标志位,清零
TI=0;
}

/*------------------------------------------------
定时器初始化子程序
------------------------------------------------*/
void Init_Timer0(void)
{
TMOD |= 0x01; //使用模式1,16位定时器,使用"|"符号可以在使用多个定时器时不受影响
//TH0=0x00; //给定初值
//TL0=0x00;
EA=1; //总中断打开
ET0=1; //定时器中断打开
TR0=1; //定时器开关打开
PT0=1; //优先级打开
}
/*------------------------------------------------
定时器中断子程序
------------------------------------------------*/
void Timer0_isr(void) interrupt 1
{
TH0=(65536-2000)/256; //重新赋值 2ms
TL0=(65536-2000)%256;

Display(0,8);

}

//外部中断程序
void ISR_INT0(void) interrupt 0
{

Speed=judge[4];
dir=judge[3];
TempData[0]=dofly_DuanMa[Speed/10];//分解显示信息,如要显示68,
TempData[1]=dofly_DuanMa[Speed%10];//则68/10=6 68%10=8

}

C#端:

namespace 单片机
{
public partial class frm : Form
{
public frm()
{
InitializeComponent();

}

private SerialPort com;

//通信协议
///


/// FF FE 00(电机) 00(方向) 00(速度) 00(停止) FD FC
///

///
///

private void btn_LED_Click(object sender, EventArgs e)
{
com = new SerialPort();
com.BaudRate = 9600;
com.PortName = "COM4";
com.DataBits = 8;
com.Open();
Byte[] data = new Byte[8];
data[0] = 0xFF;
data[1] = 0xFE;
if(rb_R.Checked==true)
{
data[2] = 0x00;
if (rb_clock.Checked == true)
{
data[3] = 0x00;
}
else if (rb_anclock.Checked == true)
{
data[3] = 0x01;
}
if (cmb_speed.Text.ToString() == "停止")
{
data[4] = 0x00;
data[5] = 0x00;
}
else
{
data[4] = Byte.Parse(cmb_speed.Text);
data[5] = 0x01;
}
}
else if (rb_LED.Checked == true)
{
data[2] = 0x01;
uint num = 255;
if (checkBox1.Checked == true)
{
num = num & 254;
}
if (checkBox2.Checked == true)
{
num = num & 253;
}
if (checkBox3.Checked == true)
{
num = num & 251;
}
if (checkBox4.Checked == true)
{
num = num & 247;
}
if (checkBox5.Checked == true)
{
num = num & 239;

}
if (checkBox6.Checked == true)
{
num = num & 223;
}
if (checkBox7.Checked == true)
{
num = num & 191;
}
if (checkBox8.Checked == true)
{
num = num & 127;
}

byte[] c = System.BitConverter.GetBytes(num);
data[3] = c[0];

if (led_s.Text.ToString() == "启用")
data[2] = 0x02;
data[4] = 0x00;
data[5] = 0x00;
}

data[6] = 0xFD;
data[7] = 0xFC;
com.Write(data, 0, 8);
com.Close();
}
}
}

文章来源: CSDN

围观 293

1基本原则

质量是关键。没有人会对很差的工作感到满足。当完成高质量的工作时,你会为此而感到骄傲。不管你是否知道,你都会因为你的高质量工作而得到信誉。因此,要想为自己所做的事感到骄傲,就需要建立个人标准,并为达到这一标准而努力奋斗。在达到这些标准时,再提高标准并继续努力。挑战自己去完成更优良的工作,你将会为自己的成就而感到惊讶。

1.1 了解单片机的能力

【规则1】设计满足要求的最精简的系统。

正确估计单片机的能力,知道单片机能做什么,最大程度的挖掘单片机的潜力对一个单片机系统设计者来说是至关重要的。我们应该有这样一个认识,即单片机的处理能力是非常强大的。早期的PC 机,其CPU(8086)处理能力和8051 相当,却能处理相当复杂的任务。单片机的能力的关键就在软件设计者编写的软件上。只有充分地了解到单片机的能力,才不会做出“冗余”的系统设计。而采用许多的外围芯片来实现单片机能实现的功能。这样做即增加了系统成本,也可能会降低了系统的可靠性。

1.2 系统可靠性至关重要

【规则2】使用看门狗。

看门狗电路通常是一块在有规律的时间间隔中进行更新的硬件。更新一般由单片机来完成,如果在一定间隔内没能更新看门狗,那看门狗将产生复位信号,重新复位单片机。更新看门狗的具体形式多是给看门狗芯片相关引脚提供一个电平上升沿或读写它的某个寄存器。使用看门狗电路将在单片机发生故障进行死机状态时,重新复位单片机。当前有多种看门狗的芯片。而且,有好多种单片机中本身就集成有看门狗。一个外部的看门狗是最好的,因为它不依赖于单片机。如果可能的话,看门狗更新程序不应该放在中断或是子程序中,原则上应该放在主程序中。我曾经见过一个工程师,他所调试的程序在运行时偶而会引起看门狗的复位动作,于是他干脆在每10ms 就中断一次的时钟中断程序中清看门狗。我相信他也知道使看门狗失去作用,可他却没有不是去查明引起这个现象的真正原因。因此,我想提醒大家:不论什么理由,绝对不要忽略系统故障的真正原因。高质量的产品来自于高素质的工程师,高质量的产品造就高素质的工程师。

【规则3】确定系统的复位信号可靠。

这是一个很容易忽略的问题。当你在设计单片机系统时,你脑中有这个概念吗?什么样的复位信号才是可靠的吗?你用示波器查看过你设计的产品的复位信号吗?不稳定的复位信号可能会产生什么样的后果?你有没有发现过你所设计的单片机系统,每次重新上电启动后,数据变得乱七八糟,并且每一次现象并不相同,找不出规律,或者有时候干脆不运行,或者有时候进入一种死机状态,有时候又一点事都没有正常运行?在这种情况下,你应该查一下你的系统的复位信号。一般在单片机的数据手册(Datasheet)中都会提到该单片机需要的复位信号的要求。一般复位信号的宽度应为。复位电平的宽度和幅度都应满足芯片的要求,并且要求保持稳定。还有特别重要的一点就是复位电平应与电源上电在同一时刻发生,即芯片一上电,复位信号就已产生。不然,由于没有经过复位,单片机中的寄存器的值为随机值,上电时就会按PC 寄存器中的随机内容开始运行程序,这样很容易进行误操作或进入死机状态。

【规则4】确定系统的初始化有效。

系统程序开始应延时一段时间。这是很多单片机程序设计中的常用方法,为什么呢?因为系统中的芯片以及器件从上电开始到正常工作的状态往往有一段时间,程序开始时延时一段时间,是让系统中所有器件到达正常工作状态。究竟延时多少才算合适?这取决于系统的各芯片中到达正常工作状态的时间,通常以最慢的为准。一般来说,延时20-100 毫秒已经足够。对于系统中使用嵌入式MODEM 等“慢热”型的器件来说,则应更长。当然,这都需要在系统实际运行中进行调整。

【规则5】上电时对系统进行检测。

上电时对系统中进行检测是单片机程序中的一个良好设计。在硬件设计时也应该细细考虑将各个使用到的芯片、接口设计成容易使用软件进行测试的模式。很多有经验的单片机设计者都会在系统上电时(特别是第一次上电时)进行全面的检测,或者更进一步,将系统的运行状态中分为测试模式和正常运行模式,通过加入测试模式对系统进行详细的检测,使得系统的批量检测更为方便容易。另外要注意的是,一个简单明了的故障显示界面也是颇要费得心思的。比如:系统的外部RAM(数据存储器)是单片机系统中常用的器件。外部RAM 如果存在问题,程序通常都会成为一匹脱缰的野马。因此,程序在启动时(至少在第一次上电启动时)一定要对外部RAM 进行检测。检测内容包括:1)检测RAM 中的单元。这主要通过写入和读出的数据保持一致。

2)检测单片机与RAM 之间的地址数据总线。总线即没有互相短路,也没有连接到“地”上。另外,很多芯片,都提供了测试的方法。如串行通信芯片UART,都带环路测试的功能。

【规则6】按EMC 测试要求设计硬件。

EMC 测试要求已经成为产品的必需。有很多的文章关于这方面的。

1.3 软件编程和调试

【规则7】尽可能使用Small 模式编译

对比起Large 模式和Compact 模式,Small 模式能生成更为紧凑的代码。在Small模式下,C51 编译器将没有使用关键词,如idata、pdata、xdata 特殊声明的变量通通放在data 单元中。在编程中,对于在的数据区,可以指定放在外部存储器中。

【规则8】在仿真前做好充分的准备

单片机硬件仿真器给单片机开发者带来了极大的方便,同时也很容易造成人的依赖性。很多时候,没有仿真器却能促使工程师写出更高质量的程序。也许在硬件仿真调试之前,下面准备工作将会对你有用:

1)程序编完后,对代码仔细逐行检查。检查代码的错误,建立自己的代码检查表,对经常易错的地方进行检查。检查代码是否符合编程规范。

2)对各个子程序进行测试。测试的方法:用程序测试程序,编制一个调用该子程序的代码,建立要测试子程序的入口条件,再看看它是否按预期输出结果。

3)如果代码有修改,再次对代码进行检查。

4)有可能的话,进行软件仿真——Keil C 的软件仿真功能十分强大。软件仿真可以防止因硬件的错误,如器件损坏、线路断路或短路,而引起调试的错误。

5)开始硬件仿真。

【规则9】使用库函数

重用代码,尤其是是标准库的代码,而不是手工编写你自己的代码。这样更快、更容易也更安全。KeilC 中提供了多个库函数,这些库函数的用法在KeilC 的帮助文件中有详细的描述。

【规则10】使用const。

这一点在很多经典的关于C 和C++的书籍中是必谈的要点。在《Exceptional C++》一书中,对这点有很精彩的描述,现摘录如下:“没有正确的安全意识的枪手在世界上是不可能活的很长的。const 观念不正确的程序员也是一样和没有时间戴紧帽子的正确,没有时间检查带电电线的电工一样不会活的很长。”在C 语言中,const 修饰符表示告诉编译器此函数将不会改变被修饰的变量的指向的任何值(除了强制类型转换)。当把指针作为参数传递时,总是合适地使用const,不仅可以防止你无意中错误的赋值,而且还可以防止在作为参数将指针传递给函数时可能会修改了本不想改变的指针所指向的对象的值。如:

const int num= 7;

num = 9; //有/可能得到编译器的警告。

const char *ptr,则表示该指针所指向的内容不会被改变,如果在程序中被发生对其赋值的操作,编译时将出错误提示。如:

const char *ptr = “hello”;

*ptr = `H`;//错误,所指内容不可改变也可将const 放在星号后面来声明指针本身不可改变。如:

char* const ptr;

ptr++; //错误,指针本身不可改变

也可同时禁止改变指针和它所引用的内容,其形式如下: const char* const ptr;

【规则11】使用static

static 是一个能够减少命名冲突的有用工具。将只在一个模块文件中的变量和函数使用static 修饰,将不会和其他模块可能具有相同名称的函数和变量在模块连接时不会产生名称冲突。一般来说,只要不是提供给其它模块使用的函数,和非全局变量,均应使用static 修饰。将子程序中的变量使用static 修饰时,表示这个变量在程序开始时分配内存,在程序结束时释放,它们在程序执行期间保持它们的值。如:

void func1(void)

{

static int time = 0;

time++

}

void func2(void)

{

static int time = 0;

time++;

}

两个子程序中的time 变量使用static 修饰,所以它们是静态变量,每调用一次time将进行加1,并保持这个值。它们的功能与下面程序相似:

int time1 = 0;

int time2 = 0;

void func1(void)

{

time1++

}

void func2(void)

{

time2++;

}

我们可以看出,使用static 修饰后,模块中的全局变量减少,使得程序的更为简单。

【规则12】不要忽视编译器的警告。

编译器的给出的警告都是有的放矢,在没有查清引起警告的真正原因之前,不要忽视它。

【规则13】注意溢出问题,写安全的代码。

1.4 KeilC 编程

【规则14】深入了解你所用的工具。

仔细查看KeilC 附带的帮助文件,你能找到你期待已久的东西。KeilC 是当前最好用的单片机开发软件。要充分利用该软件的功能,就必须对它深入的进行了解。

【规则15】不要使用语言的冷僻特性,并且记住,耍小聪明会贻害无穷。最重要的是编写你理解的代码,理解你编写的代码,你就可能会做得很好。

2 推荐书目

要成为一个优秀的单片机系统产品设计工程师,兴趣、热情、责任心至关重要。

2.1 单片机技术学习

《微机原理及应用(从16 位到32 位) 》戴梅萼等著清华大学出版社。学校教材,也是当年我学习单片机的启蒙书。

2.2 C51 编程学习

《单片机高级语言C51 Windows 环境编程与应用》作者:徐爱钧彭秀华电子工业出版社。这本书几乎覆盖了C51 编程的方方面面,最新版本对当前使用最广的keilC 也有很详细的讲述。对于刚学C51 编程的同志,本书是上上之选,强力推荐。比起现今书市上的所谓什么“C51 编程圣经”之类的书强得多。

2.3 C 语言编程必读

《C 陷阱与缺陷》Andrew Koenig 著

《C 专家编程》Peter Van Der Linden 著

C 语言开发技术经典之作,C 程序员必读之书,数十年来经久不衰。如果你想对C语言全面的掌握,真正了解C 语言的精髓,这两本书是必读之作。由人民邮电出版社出版的中文译本也还不错。

2.4 程序设计技术方面

《数据结构》 严蔚敏 清华大学出版社。清华大学出版社的教材质量稳定,中规中矩,价格相对来说也便宜一点。

《程序设计实践》Brian W. Kernighan Rob Pike 著;《代码大全》(网上有下载)。这两本是能让你看后,感觉有大突破的那种书籍,千万别吝惜银子

作者:nwq0902
文章来源:nwq0902

围观 395

到现在为止,相信大家对单片机已经有了一个基本概念,但是我们为什么要学习单片机呢?我们需要找到爱上单片机的一万个理由。

单片机在实际中的应用

单片机在生活中应用非常广泛。各种家电,如洗衣机,电冰箱,电饭煲,电子称,等等,往往会称自己的产品是高科技、全自动、微电脑控制的智能产品……对于没有接触过单片机之类器件的人来说,会感觉真的是很难想象的高科技。而当你学会单片机之后,你的想法就完全不一样了。你可能只是淡淡一笑,然后暗暗的想,人家用的什么单片机?怎么写的程序?要不改天也来自制一个类似的玩玩?当然我并不否认单片机是高科技,我这里也不是有意要冒犯家电厂商,请大家理解o(╯□╰)o。

很多数码产品,像手机,单反,摄像机,一些MP3播放器,包括电脑中的硬盘等零部件往往都用到了单片机。极大丰富了我们的业余生活。


路边各种广告牌,尤其到了晚上的时候,总会发出耀眼的光芒,而那些广告牌,很多都是用单片机来控制的。

单片机在医用设备领域的用途也相当广泛,例如医用呼吸机,各种分析仪,监护仪,超声诊断设备及病床呼叫系统等等。这些单片机不分昼夜的辛苦工作着,帮助医生们创造一次又一次救死扶伤的奇迹。

汽车甚至飞机的很多部件,也使用了很多单片机来执行各种不同的艰巨任务。单片机为我们的出行保驾护航。


单片机在工业上的应用也相当广泛。流水线上装配各种产品,都离不开单片机的控制,各种数据采集、智能化控制、警报系统等,很多都是以单片机为核心的。

单片机在我们身边的应用

知道了很多单片机的应用,但是似乎和我们的生活并没有什么直接联系。但是事实并非如此。下面我就给大家举些例子。

我小的时候,和很多人一样,特别喜欢玩具车。看到商场上有卖遥控车的,特别想要,但是当时家里条件不好,所以最终还是没买成。我后来也想过自己做个遥控车,但是无奈感觉太难了,始终没有做出来。后来上大学,我接触到了单片机,发现单片机实在太强大了。也是因为兴趣,在几个星期的时间内,我就很轻松做成了一个遥控车。

宿舍常常有人不记得带钥匙,或者出去有事带钥匙不方便,比如说去打篮球。然后几个人一起回来,大眼瞪小眼,都没拿钥匙,门都开不了,只好求助楼管。于是我在宿舍门上装了一个电子密码锁,门外是按键和指示灯,门里面是单片机和电机,电机通过细线可以把门打开。你可能会担心安全问题,实际上完全不用担心。我们的密码锁,只有在单片机工作正常、且输入密码正确的情况下,才会启动电机开门。密码可以任意修改,只要你愿意,可以输入几百位的密码。当然也完全没这必要。连续三次输入密码错误,还会亮起红灯锁定,禁止再次尝试输入密码,要等几分钟才能解锁。所以想把密码试出来也是不太现实的。如果不幸单片机没电了,或者密码锁坏了,也不用担心。它的工作原理决定了,那种情况下,只是不能输入密码开门了,门完全不可能自己被电机打开。所以安全性是毋庸置疑的。


我制作的遥控密码门锁


早上如果起得比较早,常常会起不来,参考网上的方案,我设计了一种闹钟,能模拟早晨太阳升起,室内逐渐变亮的过程,在闹铃之前半小时,会慢慢的点亮照明灯。然后由于光线的原因,人就会慢慢醒来。如果到了定时时间,人还没起来按开关确认已经起床,闹铃就开始响。并且可以把开关设置在离床比较远的地方,只有起来才能关闹铃,以免错过起床时间又睡过去了。

类似的小制作还有很多。比如有人制作的“表白神器”心型点阵,是送心仪女生的必备佳品。还有各种非常漂亮的时钟,数码相框,电子蜡烛,光立方等。也有国外牛人,用单片机制作出了各种有趣的小玩意,甚至有用单片机制作的简易电子书阅读器。爱好航模、机器人的读者也可以用单片机去制作这些东西,后期也会对单片机的机电控制进行一些初步讲解。在最后还会介绍几个项目实例,有兴趣的读者也可以试着做一做。

单片机就如同“小强”一样无处不在,给我们的生活带来了巨大的影响……

文章来源:Hainter

围观 338

调试,在企业程序设计里(我把企业商务类型的软件开发叫企业程序设计,把单片机与驱动程序这样接触底层汇编与硬件相关的程序设计叫底层程序设计),调试一般都用来跟踪变量的赋值过程,以及查看内存堆栈的内容,查看这些内容的目的在于观察变量的赋值过程与赋值情况从而达到调试的目的。由于企业程序的宿主就是开发它的计算机本身,因此企业程序设计比起底层程序设计,特别是单片机的程序设计调试来的更直观,调试也更方便。

单片机的程序设计调试分为两种,一种是使用软件模拟调试,意思就是用开发单片机程序的计算机去模拟单片机的指令执行,并虚拟单片机片内资源,从而实现调试的目的,但是软件调试存在一些问题,如计算机本身是多任务系统,划分执行时间片是由操作系统本身完成的,无法得到控制,这样就无法时时的模拟单片机的执行时序,也就是说 ,不可能像真正的单片机运行环境那样执行的指令在同样一个时间能完成(往往要完成的比单片机慢)。为了解决软件调试的问题,第二种是硬件调试,硬件调试其实也需要计算机软件的配合,大致过程是这样的:计算机软件把编译好的程序通过串行口、并行口或者USB口传输到硬件调试设备中(这个设备叫仿真器),仿真器仿真全部的单片机资源(所有的单片机接口,并且有真实的引脚输出),仿真器可以接入实际的电路中,然后与单片机一样执行。同时,仿真器也会返回单片机内部内存与时序等情况给计算机的辅助软件,这样 就可以在软件里看到真实的执行情况。不仅如此,还可以通过计算机断的软件实现单步、全速、运行到光标的常规调试手段。

点击下载

围观 342

一、内部RAM

共256个单元,用户使用前128个单元,用于存放可读写数据,后128个单元被专用寄存器占用。

前128单元具体分为:

1、工作寄存器区:共4个组,每组为8个存储单元,即00H-07H,08H-0FH,10H-17H,18H-1FH,具体选择哪一个由程序状态字(PSW)中的RS1和RS0的组合决定(在此我就不展开了,呵呵……)

2、位寻址区:20H-2FH,共16个单元,每一位可以进行位寻址(16*8=128个位地址),就是每一个触发位,就是bit可以寻址

3、便笺区:从30H-7FH,共80个单元,用于存放用户数据或作堆栈区使用。

4、从80H-FFH为专用寄存器占用,其中还离散的分布SFR(21个特殊功能寄存器)

二、256B

其中00H~7FH

可分为3个区域:

00H~1FH 是通用寄存器区

20H~2FH 是位寻址区

30H~7FH 是用户RAM区

80H~FFH是特殊功能寄存器区

三、AT89S51单片机的ram,只有128字节,地址范围:00H~7FH。

SFR不是RAM,是特殊功能寄存器,地址范围:80H~FFH,SFR在其中离散分布着。

AT89S52单片机的ram,就有256字节,地址范围:00H~FFH。

SFR,特殊功能寄存器,仍然在地址范围:80H~FFH。

两者的地址重叠了,区别方法如下:

对80H~FFH直接寻址,就是读写SFR,特殊功能寄存器;

对80H~FFH间接寻址,就是读写RAM。

先说说这几个词是什么意思:

1,DATA,51的内部RAM,只有128B(字节)大小,不管是最新的什么增强型单片机;

2,XDATA,外部RAM,只能使用MOVX寻址

3,CODE,代码区,即是你的代码的大小,AT89C51为4K,C52为8K等,增强型的有更多的选择。

然后说明一下,几种RAM的区别:

1,DATA,也是上面1提到的DATA RAM,占51的128B;

2,IDATA,大小也为128B,与DATA构成256字节的内存(如AT89C52)

3,PDATA,外部RAM的前256B(就是一个页的大小),是XDATA的一部分;

4,XDATA,外部RAM

所以你的那个单片机的1280B,其实组成为:

DATA :128B

IDATA:128B

XDATA:1024B

所以你的问题,“使用片内RAM”打勾只是软件仿真用的;你的XDATA用了758B,说明你特意用XDATA关键字定了这么大的内存,比如大数组或者内存模式时,使用了lager模式,那么编译器会自动把超出的部分放到XDATA里,我猜你应该是这里选择了lager模式,不过你的内容这么大,也只能选择lager模式。

来源:互联网

围观 400

学习一种编程语言,最重要的是建立一个练习环境,边学边练才能学好。Keil软件是目前最流行开发80C51系列单片机的软件,Keil提供了包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,通过一个集成开发环境(?Vision)将这些部份组合在一起。

学习之前请先安装KEILC51软件,在学会使用汇编语言后,学习C语言编程是一件比较容易的事,我们将通过一系列的实例介绍C语言编程的方法。图1-1所示电路图使用89c51单片机作为主芯片,这种单片机性属于80C51系列,其内部有8K的FLASH ROM,可以反复擦写,非常适于做实验。89c51的P1引脚上接8个发光二极管,P3.2~P3.4引脚上接4个按钮开关,我们的任务是让接在P1引脚上的发光二极管按要求发光。

简单的C程序介绍

例1-1: 让接在P1.0引脚上的LED发光。

/************************************************

单灯闪烁程序

*************************************************/

#include "reg51.h"//这一句是将51的常用端口,内部寄存器等的定义文件包含进这段程序

sbit P1_0=P1^0;

void main()

{  P1_1=0;

}

这个程序的作用是让接在P1.0引脚上的LED点亮。下面来分析一下这个C语言程序包含了哪些信息。

1)"文件包含"处理。

程序的第一行是一个"文件包含"处理。

所谓"文件包含"是指一个文件将另外一个文件的内容全部包含进来,所以这里的程序虽然只有4行,但C编译器在处理的时候却要处理几十或几百行。这里程序中包含REG51.h文件的目的是为了要使用P1这个符号,即通知C编译器,程序中所写的P1是指80C51单片机的P1端口而不是其它变量。这是如何做到的呢?

打开reg51.h可以看到这样的一些内容:

/*--------------------------------------------------------------------REG51.H

Header file for generic 80C51 and 80C31 microcontroller.

Copyright (c) 1988-2001 Keil Elektronik GmbH and Keil Software, Inc.

All rights reserved.

--------------------------------------------------------------------------*/

/* BYTE Register */

sfr P0 = 0x80;

sfr P1 = 0x90;

sfr P2 = 0xA0;

sfr P3 = 0xB0;

sfr PSW = 0xD0;

sfr ACC = 0xE0;

sfr B = 0xF0;

sfr SP = 0x81;

sfr DPL = 0x82;

sfr DPH = 0x83;

sfr PCON = 0x87;

sfr TCON = 0x88;

sfr TMOD = 0x89;

sfr TL0 = 0x8A;

sfr TL1 = 0x8B;

sfr TH0 = 0x8C;

sfr TH1 = 0x8D;

sfr IE = 0xA8;

sfr IP = 0xB8;

sfr SCON = 0x98;

sfr SBUF = 0x99;

/* BIT Register */

/* PSW */

sbit CY = 0xD7;

sbit AC = 0xD6;

sbit F0 = 0xD5;

sbit RS1 = 0xD4;

sbit RS0 = 0xD3;

sbit OV = 0xD2;

sbit P = 0xD0;

/* TCON */

sbit TF1 = 0x8F;

sbit TR1 = 0x8E;

sbit TF0 = 0x8D;

sbit TR0 = 0x8C;

sbit IE1 = 0x8B;

sbit IT1 = 0x8A;

sbit IE0 = 0x89;

sbit IT0 = 0x88;

/* IE */

sbit EA = 0xAF;

sbit ES = 0xAC;

sbit ET1 = 0xAB;

sbit EX1 = 0xAA;

sbit ET0 = 0xA9;

sbit EX0 = 0xA8;

/* IP */

sbit PS = 0xBC;

sbit PT1 = 0xBB;

sbit PX1 = 0xBA;

sbit PT0 = 0xB9;

sbit PX0 = 0xB8;

/* P3 */

sbit RD = 0xB7;

sbit WR = 0xB6;

sbit T1 = 0xB5;

sbit T0 = 0xB4;

sbit INT1 = 0xB3;

sbit INT0 = 0xB2;

sbit TXD = 0xB1;

sbit RXD = 0xB0;

/* SCON */

sbit SM0 = 0x9F;

sbit SM1 = 0x9E;

sbit SM2 = 0x9D;

sbit REN = 0x9C;

sbit TB8 = 0x9B;

sbit RB8 = 0x9A;

sbit TI = 0x99;

sbit RI = 0x98;

熟悉80C51内部结构的读者不难看出,这里都是一些符号的定义,即规定符号名与地址的对应关系。注意其中有

sfr P1 = 0x90;

这样的一行(上文中用黑体表示),即定义P1与地址0x90对应,P1口的地址就是0x90(0x90是C语言中十六进制数的写法,相当于汇编语言中写90H)。

从这里还可以看到一个频繁出现的词:sfr

sfr并标准C语言的关键字,而是Keil为能直接访问80C51中的SFR而提供了一个新的关键词,其用法是:

sfrt 变量名=地址值。

2)符号P1_0来表示P1.0引脚。

在C语言里,如果直接写P1.0,C编译器并不能识别,而且P1.0也不是一个合法的C语言变量名,所以得给它另起一个名字,这里起的名为P1_0,可是P1_0是不是就是P1.0呢?你这么认为,C编译器可不这么认为,所以必须给它们建立联系,这里使用了Keil C的关键字sbit来定义,sbit的用法有三种:

第一种方法:sbit 位变量名=地址值

第二种方法:sbit 位变量名=SFR名称^变量位地址值

第三种方法:sbit 位变量名=SFR地址值^变量位地址值

如定义PSW中的OV可以用以下三种方法:

sbit OV=0xd2 (1)说明:0xd2是OV的位地址值

sbit OV=PSW^2 (2)说明:其中PSW必须先用sfr定义好

sbit OV=0xD0^2 (3)说明:0xD0就是PSW的地址值

因此这里用sfr P1_0=P1^0;就是定义用符号P1_0来表示P1.0引脚,如果你愿意也可以起P10一类的名字,只要下面程序中也随之更改就行了。

3)main称为"主函数"。

每一个C语言程序有且只有一个主函数,切必须有一个主函数,其放置的位置不要求,可以放在程序最后(推荐),函数后面一定有一对大括号"{}",在大括号里面书写其它程序。

从上面的分析我们了解了部分C语言的特性,下面再看一个稍复杂一点的例子。

例1-2 让接在P1.0引脚上的LED闪烁发光

/*************************************************

单灯闪烁程序

*************************************************/

#include "reg51.h"

#define uchar unsigned char

#define uint unsigned int

sbit P10=P1^0;

/*延时程序

由Delay参数确定延迟时间

*/

void mDelay(unsigned int Delay)

{ unsigned int i;

for(;Delay>0;Delay--)

{ for(i=0;i<124;i++)

{;}

}

}

void main()

{ for(;;)

{ P10=!P10; //取反P1.0引脚

mDelay(1000);

}

}

程序分析:主程序main中的第一行暂且不看,第二行是"P1_0=!P1_0;",在P1_0前有一个符号"!",符号"!"是C语言的一个运算符,就像数学中的"+"、"-"一样,是一种运算任号,意义是"取反",即将该符号后面的那个变量的值取反。

注意:取反运算只是对变量的值而言的,并不会自动改变变量本身。可以认为C编译器在处理"!P1_0"时,将P1_0的值给了一个临时变量,然后对这个临时变量取反,而不是直接对P1_0取反,因此取反完毕后还要使用赋值符号("=")将取反后的值再赋给P1_0,这样,如果原来P1.0是低电平(LED亮),那么取反后,P1.0就是高电平(LED灭),反之,如果P1.0是高电平,取反后,P1.0就是低电平,这条指令被反复地执行,接在P1.0上灯就会不断"亮"、"灭"。

该条指令会被反复执行的关键就在于main中的第一行程序:for(;;),这里不对此作详细的介绍,读者暂时只要知道,这行程序连同其后的一对大括号"{}"构成了一个无限循环语句,该大括号内的语句会被反复执行。

第三行程序是:"mDelay(1000);",这行程序的用途是延时1s时间,由于单片机执行指令的速度很快,如果不进行延时,灯亮之后马上就灭,灭了之后马上就亮,速度太快,人眼根本无法分辨。

这里mDelay(1000)并不是由Keil C提供的库函数,即你不能在任何情况下写这样一行程序以实现延时。如果在编写其它程序时写上这么一行,会发现编译通不过。那么这里为什么又是正确的呢?注意观察,可以发现这个程序中有void mDelay(…)这样一行,可见,mDelay这个词是我们自己起的名字,并且为此编写了一些程序行,如果你的程序中没有这么一段程序行,那就不能使用mDelay(1000)了。有人脑子快,可能马上想到,我可不可以把这段程序也复制到我其它程序中,然后就可以用mDelay(1000)了呢?回答是,那当然就可以了。还有一点需要说明,mDelay这个名称是由编程者自己命名的,可自行更改,但一旦更改了名称,main()函数中的名字也要作相应的更改。

mDelay后面有一个小括号,小括号里有数据(1000),这个1000被称之"参数",用它可以在一定范围内调整延时时间的长短,这里用1000来要求延时时间为1000毫秒,要做到这一点,必须由我们自己编写的mDelay那段程序决定的,详细情况在后面循环程序中再作分析,这里就不介绍了。

围观 516

从本文开始进入单片机入门篇的学习。入门篇主要介绍各种单片机基础知识概念。

入门篇阅读建议:根据个人已经掌握的知识,有重点的去读。如果介绍到你已经学过的知识,你只需要简单阅读一下,或者直接跳过。如果看后面的文章感觉有些知识掌握的还不好,可以在回来看入门篇相关的介绍。

数字的发明

很久以前,人类发明了数字。自此,人类社会发生了巨大的变化。有了数字,人们解决了很多问题。在数字的帮助下,人们学会了度量和计算,人们发明了温度计,发明了钟表,发明了直尺,发明了算盘……生活中原本模糊的概念,变的不再模糊,而是十分精确。


电的广泛应用和各种电子器件的发明

1870年以后,科学技术的发展突飞猛进,各种新技术、新发明层出不穷,并被迅速应用于工业生产,大大促进了经济的发展。第二次工业革命爆发了。在这次工业革命中,电力得到了广泛的应用。

之后人们发明了各种电子元器件,特别是电子管、晶体管以及后来集成电路的发明对人类社会产生了巨大的影响。图中给大家展示了一些常见的集成电路芯片。


计算机的发明

有句话说,懒人推动社会进步。这句话是有一定道理的。在科技不断发展的过程中,一方面,人们希望制造出一种机器,能帮助我们完成处理现实世界中的各种问题,让我们从重复而繁重的脑力劳动中解放出来;另一方面,往往是在军事上,由于种种原因需要在较短的时间内,完成一些像炮弹轨道计算,密码破译之类的任务,而人类的数字运算能力往往远达不到要求。

最初人们发明了算盘之类的计算工具,又有人发明了一些机械式计算机,通过齿轮传动等原理进行运算。而后,在电子技术飞速发展的情况下,人们发明了电子计算机。早期电子计算机采用大量电子管,十分庞大,需要消耗很多电量,操作也非常复杂。如1946年发明的“埃尼阿克”电子计算机,占地面积170平方米,重达30吨,耗电量高达150千瓦,而运算能力却远不及今天智能手机的CPU,尽管如此,它已经比当时的继电器计算机快一千倍。而随着晶体管、集成电路的出现,计算机技术以惊人的速度发展着,到今天各种计算机设备随处可见,甚至我们很多人每天的生活和工作都已经离不开计算机。


帕斯卡和他的齿轮式加法器

数字计算机发明之前,电子计算机都是模拟计算机。模拟计算机通过内部电子器件的电压、电流大小等来表示一个数字或物理量,进行处理。这种计算机处理问题的精度差,而且结构复杂,也很容易受外界干扰。于是后来人们发明了数字计算机。数字计算机把外界的各种信息转换成数字,然后对数字进行运算,最终得到一个确定的结果。我们人类使用的数字一般为十进制,这是因为我们有十个手指。但是由于很多电子器件都只有两种确定的状态,比如开关的开和关,灯的亮和灭,于是数字计算机使用的是二进制的数字,通过控制器件的开和关来表示数字“1”和“0”,实现各种功能。由于它没有模拟计算机的那些缺陷,发展十分迅速,成为今天计算机的主流。

单片机的发明

在计算机发展的同时,另一种大家相对陌生的东西也在悄悄发展着。在1971年,全球第一个计算机微处理器4004由美国Intel公司推出的同时,一种称之为单片机的技术也逐渐发展并得到广泛应用。单片机全称单片微型计算机,又称为微型控制器,英文名MCU(Micro Control Unit),可以理解为精简版的计算机。单片机相当于将计算机中的各个主要部件,CPU、存储器、IO口、中断系统等封装在一个集成电路芯片中。初学者或许对这些名词很陌生,但是不需要担心,关于他们分别是什么,后面会给大家介绍。下面是一些现在常见的单片机。


从左往右,1、2为51单片机,3、4为AVR单片机,5、6、7为MSP430单片机

为什么要发明单片机呢?这个很好理解。俗话说,杀鸡焉用牛刀。生活中有很多事情不很复杂,并不需要计算机那么庞大的机器来处理,于是我们只需要用精简版的计算机——即单片机来完成任务就好了。

单片机的特点

比起大家熟悉的计算机,单片机的配置可就差多了,简直是低的难以想象。我们常用的笔记本电脑CPU处理速度可以达到2GHz以上,还是双核四核甚至更高级,但是拿一款常见的单片机(STC89C52RC,我们即将以这款单片机开始来进行学习)来对比,它的最高处理速度只有几十MHz(其中1GHz = 1000MHz);笔记本电脑硬盘动辄几百GB乃至几TB,而单片机中相当于硬盘的ROM只有几到几十KB(1TB = 1024GB,1GB = 1024MB,1MB = 1024KB,1KB = 1024B);主流笔记本的内存普遍都有几个GB,单片机中相当于内存的RAM只有可怜的几十字节(即单位B)。但是大家千万不要小瞧这么“低端”的单片机,只要给它写进程序,足以控制一台我们经常看到的所谓“智能洗衣机”之类的电器。而且学习了单片机,也会让你对计算机有更深入的了解。

文章来源: Hainter

围观 380

页面

订阅 RSS - 单片机