位带操作

位带操作可能现在用的比较少了,但在以前MCU性能不是很好的时候,位带操作却是众多软件工程师常用操作。

本文主要结合Cortex-M3内核(STM32F1)来讲述,相信许多朋友在初学的时候都被绕晕过。

1、关于位带操作

Bit-banding简称位带,有人也叫位段。支持位带操作后,可以使用普通的加载/存储指令来对单一的比特进行读写。

很多朋友是从学习51单片机过来的,都知道P1.1这个引脚可以单独控制,我们操作的这个引脚就是一个Bit位。

我们都知道在STM32中不能直接操作寄存器的某一个Bit位,比如单独控制PA端口输出数据寄存器中的ODR1,如下图:

1.jpg

STM32F1内核Cortex-M3早就考虑到了这个问题,为了能达到直接操作ODR1这类Bit位,就在内核中开辟了一块地址区域(位带别名):可以将ODR1这类Bit位(位带区)映射到位带别名区域对应的地址,只需要操作映射后的地址,就可以实现操作这个ODR1位了。

简单来说就是映射操作,只是这个映射操作有许多约定要遵循。

2、位带操作中的映射关系

在Cortex-M3中有两个区实现了位带操作,其中一个是 SRAM区的最低 1MB 范围,第二个则是片内外设区的最低 1MB 范围。

这两个区域如下图红色标注的区域:

2.jpg

这两个1MB将分别映射到另外两个地址区域:1.SRAM区的最低1MB(0x2000 0000 --- 0x200F FFFF) 映射到(0x2200 0000 --- 0x23FF FFFF)。

2.片内外设区的最低1MB(0x4000 0000 --- 0x400F FFFF)映射到(0x4200 0000 --- 0x43FF FFFF)。

其实就是映射到偏移(距离自身)0x0200 0000外的32MB空间(位带别名区),如下图SRAM区映射关系:

3.jpg

提示:看图中的有颜色的8Bit,它是映射到偏移0x0200 0000外的32Bit(4Byte)空间上。我们读写0x2200 0000这个地址,其实就是操作0x2000 0000中的Bit0位。

这就是所谓的“比特的膨胀对应关系”,1Bit膨胀到32Bit(4字节)。4字节对应的就是那1Bit位的地址,而这个地址中的数据只有最低一位才有效(LSB)。

解释上面多处出现的关键词:位带区:支持位带操作的地址区;位带别名:对别名地址的访问最终作用到位带区的访问上;

3、位带区->别名区计算公式

位带操作的主要目的:通过Bit位地址(A)计算得到别名区地址(AliasAddr)。

1.SARM区计算公式

AliasAddr = 0x22000000 + ((A‐0x20000000)*8+n)*4 = 0x22000000+(A-0x20000000)*32 + n*4

2.片上外设区计算公式

AliasAddr = 0x42000000 + ((A-0x40000000)*8+n)*4 = 0x42000000+(A-0x40000000)*32 + n*4

由于映射关系一样,所以公式原理也一样,只是地址不一样。计算公式需要结合上图比特的膨胀对应关系来理解。

*8:1个字4个字节;

*4:1个字节8Bit;

4、代码实现

利用上面计算公式,代码实现的过程就很简单,我们的目的就是对“AliasAddr”这个地址进行读写操作。

1.RAM位带操作宏定义

#define BITBAND_RAM(RAM, BIT) (*((uint32_t volatile*)(0x22000000u + (((uint32_t)&(RAM) - (uint32_t)0x20000000u)<<5) + (((uint32_t)(BIT))<<2))))

2.外设寄存器位带宏定义

#define BITBAND_REG(REG, BIT) (*((uint32_t volatile*)(0x42000000u + (((uint32_t)&(REG) - (uint32_t)0x40000000u)<<5) + (((uint32_t)(BIT))<<2))))

方便大家对比,给一个截图:

4.png

A.RAM地址0x20001000的Bit1位写0

BITBAND_RAM(*(uint32_t *)0x20001000, 1) = 0;

B.读取RAM地址0x20001000的Bit1位

uint8_t Val;Val=BITBAND_RAM(*(uint32_t *)0x20001000, 1);

C.对PA1数据输出寄存器输出1

BITBAND_REG(GPIOA->ODR, 1) = 1;

D.读取PA1数据输出寄存器

uint8_t Val;Val=BITBAND_REG(GPIOA->ODR, 1);

这里就是操作某一个地址,类似于操作指针一样;

5、位带操作优缺点

1.优点

相比直接操作寄存器代码更简洁,运行效率更高。避免在多任务,或中断时出现紊乱等。

2.缺点

操作不当(传入地址参数不对),容易出现总线Fault。

6、最后

关于Cortex-M3的位带操作,更多详情可以参看Cortex-M3技术参考手册(权威指南)。
这后面的Cortex-M处理器已经不再支持位带操作了,从兼容未来软件的角度来说,不是很建议大家再继续使用了。

只是位带操作是一种经典,这里分享给大家了解一下,希望对你们有帮助。

来源:嵌入式专栏

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 300

支持了位带操作后,可以使用普通的加载/存储指令来对单一的比特进行读写。在 CM3 中,有两个区中实现了位带。其中一个是 SRAM 区的最低 1MB 范围,第二个则是片内外设区的最低 1MB范围。这两个区中的地址除了可以像普通的 RAM 一样使用外,它们还都有自己的“位带别名区”,位带别名区把每个比特膨胀成一个 32 位的字。当你通过位带别名区访问这些字时,就可以达到访问原始比特的目的。

位带操作的概念其实 30 年前就有了,那还是8051 单片机开创的先河,如今,CM3 将此能力进化,这里的位带操作是 8051 位寻址区的威力大幅加强版。

CM3 使用如下术语来表示位带存储的相关地址:

位带区:支持位带操作的地址区

位带别名:对别名地址的访问最终作用到位带区的访问上(这中途有一个地址映射过程)

在位带区中,每个比特都映射到别名地址区的一个字——这是只有 LSB 有效的字。当一个别名地址被访问时,会先把该地址变换成位带地址。对于读操作,读取位带地址中的一个字,再把需要的位右移到 LSB,并把 LSB 返回。对于写操作,把需要写的位左移至对应的位序号处,然后执行一个原子的“读-改-写”过程。

STM32中的位带(bit-band)操作

STM32中的位带(bit-band)操作

STM32中的位带(bit-band)操作

支持位带操作的两个内存区的范围是:
0x2000_0000‐0x200F_FFFF(SRAM 区中的最低 1MB)
0x4000_0000‐0x400F_FFFF(片上外设区中的最低 1MB)

对 SRAM 位带区的某个比特,记它所在字节地址为 A,位序号为 n(0<=n<=7),则该比特在别名区的地址为:

AliasAddr=0x22000000+((A-0x20000000)*8+n)*4=0x22000000+(A-0x20000000)*32+n*4

对于片上外设位带区的某个比特,记它所在字节的地址为 A,位序号为 n(0<=n<=7),则该比特在别名区的地址为:

AliasAddr=0x42000000+((A-0x40000000)*8+n)*4=0x42000000+(A-0x40000000)*32+n*4

上式中,“*4”表示一个字为 4 个字节,“*8”表示一个字节中有 8 个比特。

这里再不嫌啰嗦地举一个例子:

1. 在地址 0x20000000 处写入 0x3355AACC
2. 读取地址0x22000008。本次读访问将读取 0x20000000,并提取比特 2,值为 1。
3. 往地址 0x22000008 处写 0。本次操作将被映射成对地址 0x20000000 的“读-改-写”操作(原子的),把比特2 清 0。
4. 现在再读取 0x20000000,将返回 0x3355AAC8(bit[2]已清零)。

位带别名区的字只有 LSB 有意义。另外,在访问位带别名区时,不管使用哪一种长度的数据传送指令(字/半字/字节),都把地址对齐到字的边界上,否则会产生不可预料的结果。

///////////////////////////////////////////////////////////////
//位带操作,实现51类似的GPIO控制功能
//具体实现思想,参考《CM3权威指南》第五章(87页~92页).
//IO口操作宏定义
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x2000000+((addr &0xFFFFF)<<5)+(bitnum<<2))
#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))
#define BIT_ADDR(addr, bitnum) MEM_ADDR(BITBAND(addr, bitnum))
//IO口地址映射
#define GPIOA_ODR_Addr (GPIOA_BASE+12) //0x4001080C
#define GPIOB_ODR_Addr (GPIOB_BASE+12) //0x40010C0C
#define GPIOC_ODR_Addr (GPIOC_BASE+12) //0x4001100C
#define GPIOD_ODR_Addr (GPIOD_BASE+12) //0x4001140C
#define GPIOE_ODR_Addr (GPIOE_BASE+12) //0x4001180C
#define GPIOF_ODR_Addr (GPIOF_BASE+12) //0x40011A0C
#define GPIOG_ODR_Addr (GPIOG_BASE+12) //0x40011E0C

#define GPIOA_IDR_Addr (GPIOA_BASE+8) //0x40010808
#define GPIOB_IDR_Addr (GPIOB_BASE+8) //0x40010C08
#define GPIOC_IDR_Addr (GPIOC_BASE+8) //0x40011008
#define GPIOD_IDR_Addr (GPIOD_BASE+8) //0x40011408
#define GPIOE_IDR_Addr (GPIOE_BASE+8) //0x40011808
#define GPIOF_IDR_Addr (GPIOF_BASE+8) //0x40011A08
#define GPIOG_IDR_Addr (GPIOG_BASE+8) //0x40011E08

//IO口操作,只对单一的IO口!
//确保n的值小于16!
#define PAout(n) BIT_ADDR(GPIOA_ODR_Addr,n) //输出
#define PAin(n) BIT_ADDR(GPIOA_IDR_Addr,n) //输入

#define PBout(n) BIT_ADDR(GPIOB_ODR_Addr,n) //输出
#define PBin(n) BIT_ADDR(GPIOB_IDR_Addr,n) //输入

#define PCout(n) BIT_ADDR(GPIOC_ODR_Addr,n) //输出
#define PCin(n) BIT_ADDR(GPIOC_IDR_Addr,n) //输入

#define PDout(n) BIT_ADDR(GPIOD_ODR_Addr,n) //输出
#define PDin(n) BIT_ADDR(GPIOD_IDR_Addr,n) //输入

#define PEout(n) BIT_ADDR(GPIOE_ODR_Addr,n) //输出
#define PEin(n) BIT_ADDR(GPIOE_IDR_Addr,n) //输入

#define PFout(n) BIT_ADDR(GPIOF_ODR_Addr,n) //输出
#define PFin(n) BIT_ADDR(GPIOF_IDR_Addr,n) //输入

#define PGout(n) BIT_ADDR(GPIOG_ODR_Addr,n) //输出
#define PGin(n) BIT_ADDR(GPIOG_IDR_Addr,n) //输入

出处:http://www.cnblogs.com/yuandongtao1989/p/6804318.html

围观 444
订阅 RSS - 位带操作