上拉电阻

526095766_642的头像
526095766_642

STM32中的GPIO

“”

以STM32中的GPIO为例,如上图是GPIO的结构图。

从上图中标号2处可以看到,上拉和下拉电阻上都有一个开关,通过配置上下拉电阻开关,可以控制引脚的默认电平,这里有三种状态:

  • 开启上拉时,引脚默认电压为高电平

  • 开启下拉时,引脚默认电压为低电平

  • 上拉和下拉不开启时,这种状态我们称为浮空模式

STM32上下拉及浮空模式的配置是通过GPIOx_CRL和GPIOx_CRH寄存器控制的,可以通过《STM32F1xx 中文参考手册》查阅。

开启上拉电阻或下拉电阻的作用

STM32内部的上拉其实是一个弱上拉,也就是说通过此上拉电阻输出的电流很小,如果想要输出一个大电流。那么就需要外接上拉电阻了,其实就是增加导线的输出电流。

下拉电阻情况相反,让STM32的CPU引脚输出低电平,结果由于后续电路影响输出的低电平达不到GND。所以接个下拉电阻,其实就是为了降低导线的输出电流。

另外当上下拉电阻都不开启,此时是浮空模式,引脚的电压是不确定的,此模式下的管脚电压会时不时改变。

所以为了防止引脚悬空,产生积累电荷、静电荷,造成电路不稳定。一般情况下,我们都会给引脚设置成上拉或者下拉模式,使它有一个确定的默认电平状态。

以上拉电阻举例,在STM32刚上电的时候,芯片引脚电平是不确定的。特别引脚是接按键的时候,必须给他个确定的电平。下拉电阻的作用就是,强制让电平保持在低电平。
上下拉电阻阻值的大小

根据拉电阻的阻值大小,可以分为强拉或弱拉(weak pull-up/down)。拉电阻阻值越小则表示电平能力越强,为强拉,可以抵抗外部噪声的能力也越强,相应的功耗也越大。

举个例子:

按键的上拉电阻可以选择3.3k、4.7k、5.1k、10k等,但是电阻越小,电流越大,功耗也越大。10k的上拉电阻带来的电流,是大多数芯片所能识别到的引脚电流,如果电阻太大,电流太小,引脚识别不了,所以10k是个折中的方案。这里的电流,简单来说是根据公式VDD/R拉电阻计算出来的。

本文转载自:STM32嵌入式开发
免责声明:本文为用户转载的文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行删除(联系邮箱:cathy@eetrend.com)。

围观 255

GPIO口的定义:

GPIO口,通用输入输出,这个大家都知道,但是输入,输出的电路是什么样的,其实并不用太关心,只需配置寄存器即可,但是还是要摸一摸,为了方便理解,引入了单片机的IO口原理图来说明(道理是一样的)。

认识电路:

一、普通IO口

如上图所示(红色框是板子内部)

1、基级(②位置)为低电平时,PNP导通,此时单片机IO口输出的是低电平,当基级(②位置)为高电平时,PNP导通,此时单片机IO口输出的是高电平。

2、这里注意,④位置上是一个上拉电阻,这里设置上拉电阻的考虑因素是这样的,假设我要在这个单片机IO口输出一个电流来驱动小灯发亮,①的位置电阻一般有20k左右,发出的电流250uA,基本上忽略不计,加上一个上拉电阻后,总电流 = ①位置电流 + ④位置电流(①与④构成并联电路)。

3、为什么不设置让,①的位置电阻R小一点,这样电流大一点,就不需要上拉电阻了呢?因为单片机是控制单元,设计时最好把强电流设计到外围电路里,如果设计到单片机内部,会烧坏板子。

这里体现出上拉电阻的其中一个作用--->加大电流,加强了驱动的能力

二、强推挽输出:

意思就是说能输入输出大电流,前面已经说了单片机内部最好不要设计大的电流,所以这个功能的IO要少用


1、内部总线输入高电平, 上面的NPN导通,则IO口输出大电流(因为上面的三极管VCC电源下面没有接上拉电阻, I = VCC/电阻+NPN内部电阻),所以IO出口的地方一般接一个电阻限流内部总线输如低电平, 下面的NPN导通,则此时如果IO口外面接一个VCC(不带上拉电阻),就会有大电流灌输进来。

这里体现了上拉电阻的另一个作用--->限流

三、开漏级OC门:


什么叫IO口的开漏状态,如上图所示 如果内线是高电平,则NPN的基级是低电平,此时NPN不导通,那么IO口此时相当于是悬浮在空气中的,所以无法确定它的状态(不知道是低电平还是高电平),那么这个状态就是开漏状态,所以此时要向外围电路输出一个高电平是不可能的,如果想输出一个高电平,则必须在NPN的集电极上面来一个上拉电阻。

这时又体现出上拉的一个作用:就是将不确定的信号通过一个电阻嵌位(保持)在一个高电平上,下拉同理。

这里对于OC门还有一个应用,可以控制高电位的电路,如果外围电路需要大的电压,则可以用OC门加上拉电阻来完成这个功能,如下图所示, 当内部总线为高电平,则NPN截止,最右边加一个12v的上拉电阻,使得电位钳在12v供外围电路使用。


本文转载自网络,仅供学习交流使用,如有侵权,请联系删除。

围观 665

在电路设计中,为了将电阻钳位维持在高电平,会借助上拉电阻来实现电阻的稳定,因此上拉电阻开始大量出现在电路设计中。本文从以键盘电路实例为切入点,为大家分析一种由于上拉电阻位置原因导致51单片机电路无法正常运行的情况。

首先让我们来看一看这个键盘电路的原理图,如图1所示。


图1

在按键没有被按下时,端口为低电平,按下按键的时候端口上接高电平。但电路却没有正常工作,出现了问题。

下面就来分析一下问题所在。首先,将电源直接接到端口上是绝对不可以的。当按下按键时,会有很大的电流进入单片机。在工程上,这种往往应该加限流电阻,一般选择1K即可。

但也不能选择太大的电阻,因为电阻上面压降太大,造成输入低于应有的高电平,造成错误。

其次,即便添加限流,电路也是不能工作的。检查AT89C51的DataSheet就会发现技术手册中提到:P0口是没有上拉电阻的端口。P1、P2、P3口带有上拉电阻

这就是问题所在,那么什么是上拉电阻呢?

图2 外线接收的电路图

图2为红外线接收的电路图,图中的电阻就是上拉电阻。我们可以试图理解一下51单片机P2口的这个上拉电阻为这种形式:

图3

图3中的R就是上拉电阻。如果按照文章开头的例子中那样设计电路,电路便会变成以下的形式:

图4

从图4中可以清晰的看出,不管按键是否按下,IO端口上都是高电平。问题就在这里,回头检测本例中的IO端口电平在按下按键前后的变化,可以发现不管是否按下按键,都为高电平。

由此可知,在进行电路设计之前,对所需各类器件的DataSheet进行充分了解还是非常有必要的,因为其中的一些小细节就极有可能决定整个设计是否能够

来源:玩转单片机

围观 30

耦合与退耦

什么是耦合电容?什么是去耦电路?

耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。

退耦是指对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的影响。耦合常数是指耦合电容值与第二级输入阻抗值乘积对应的时间常数。

退耦有三个目的:

1.将电源中的高频纹波去除,将多级放大器的高频信号通过电源相互串扰的通路切断。
2.大信号工作时,电路对电源需求加大,引起电源波动,通过退耦降低大信号时电源波动对输入级/高电压增益级的影响;
3.形成悬浮地或是悬浮电源,在复杂的系 统中完成各部分地线或是电源的协调匹 有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。

摘引自伦德全《电路板级的电磁兼容设计》一文,该论文对噪声耦和路径、去耦电容和旁路电容的使用都讲得不错。请参阅。

干扰的耦合方式

干扰源产生的干扰信号是通过一定的耦合通道对电控系统发生电磁干扰作用的。干扰的耦合方式无非是通过导线、空间、公共线等作用在电控系统上。

分析下来主要有以下几种。

直接耦合:这是干扰侵入最直接的方式,也是系统中存在最普遍的一种方式。如干扰信号通过导线直接侵入系统而造成对系统的干扰。对这种耦合方式,可采用滤波去耦的方法有效地抑制电磁干扰信号的传入。

公共阻抗耦合:这也是常见的一种耦合方式。常发生在两个电路的电流有共同通路的情况。公共阻抗耦合有公共地和电源阻抗两种。防止这种耦合应使耦合阻抗趋近于零、使干扰源和被干扰对象间没有公共阻抗。

电容耦合:又称电场耦合或静电耦合,是由于分布电容的存在而产生的一种耦合方式。

电磁感应耦合:又称磁场耦合。是由于内部或外部空间电磁场感应的一种耦合方式,防止这种耦合的常用方法是对容易受干扰的器件或电路加以屏蔽。

辐射耦合:电磁场的辐射也会造成干扰耦合,是一种无规则的干扰。这种干扰很容易通过电源线传到系统中去。另当信号传输线较长时,它们能辐射干扰波和接收干扰波,称为大线效应。

漏电耦合:所谓漏电耦合就是电阻性耦合。这种干扰常在绝缘降低时发生。记得以前我的观点是:去藕电容一般容量比较大,也就是避免噪声耦合到其他部分的意思;旁路电容容量小,提供低阻抗的噪声回流路径。 其实这种说法也可以算没有什么大错误。但是经过偶查阅了相关资料,才发现其实decouple和bypass从根本上来说没有任何区别,两者在称谓上可以互换。两者的作用低俗一点说:当电源用。

所谓噪声其实就是电源的波动,电源波动来自于两个方面:电源本身的波动,负载对电流需求变化和电源系统相应能力的差别带来的电压波动。而去藕和旁路电容都是相对负载变化引起的噪声来说。所以他们两个没有必要做区分。而且实际上电容值的大小,数量也是有理论根据可循的,如果随意选择,可能会在某些情况下遇到去藕电容(旁路)和分布参数发生自激振荡的情况。所以真正意义上的去藕和旁路都是根据负载和供电系 统的实际情况来说的。没有必要去做区分,也没有本质区别。

电容是板卡设计中必用的元件,其品质的好坏已经成为我们判断板卡质量的一个很重要的方面。

①电容的功能和表示方法。
由两个金属极,中间夹有绝缘介质构成。电容的特性主要是隔直流通交流,因此多用于级间耦合、滤波、去耦、旁路及信号调谐。电容在电路中用“C”加数字表示,比如C8,表示在电路中编号为8的电容。

②电容的分类。
电容按介质不同分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。按极性分为:有极性电容和无极性电容。按结构可分为:固定电容,可变电容,微调电容。

③电容的容量。
电容容量表示能贮存电能的大小。电容对交流信号的阻碍作用称为容抗,容抗与交流信号的频率和电容量有关,容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)。

④电容的容量单位和耐压。
电容的基本单位是F(法),其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。由于单位F 的容量太大,所以我们看到的一般都是μF、nF、pF的单位。换算关系:1F=1000000μF,1μF=1000nF=1000000pF。
每一个电容都有它的耐压值,用V表示。一般无极电容的标称耐压值比较高有:63V、100V、160V、250V、400V、600V、1000V等。有极电容的耐压相对比较低,一般标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。

⑤电容的标注方法和容量误差。
电容的标注方法分为:直标法、色标法和数标法。对于体积比较大的电容,多采用直标法。如果是0.005,表示0.005uF=5nF。如果是5n,那就表示的是5nF。
数标法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是10的多少次方。如:102表示10x10x10 PF=1000PF,203表示20x10x10x10 PF。 nn色标法,沿电容引线方向,用不同的颜色表示不同的数字,第一、二种环表示电容量,第三种颜色表示有效数字后零的个数(单位为pF)。颜色代表的数值为:黑=0、棕=1、红=2、橙=3、黄=4、绿=5、蓝=6、紫=7、灰=8、白=9。
电容容量误差用符号F、G、J、K、L、M来表示,允许误差分别对应为±1%、±2%、±5%、±10%、±15%、±20%。

⑥电容的正负极区分和测量。
电容上面有标志的黑块为负极。在PCB上电容位置上有两个半圆,涂颜色的半圆对应的引脚为负极。也有用引脚长短来区别正负极长脚为正,短脚为负。

当我们不知道电容的正负极时,可以用万用表来测量。电容两极之间的介质并不是绝对的绝缘体,它的电阻也不是无限大,而是一个有限的数值,一般在1000兆欧以上。电容两极之间的电阻叫做绝缘电阻或漏电电阻。只有电解电容的正极接电源正(电阻挡时的黑表笔),负端接电源负(电阻挡时的红表笔)时,电解电容的漏电流才小(漏电阻大)。反之,则电解电容的漏电流增加(漏电阻减小)。这样,我们先假定某极为“+”极,万用表选用R*100或R*1K挡,然后将假定的“+”极与万用表的黑表笔相接,另一电极与万用表的红表笔相接,记下表针停止的刻度(表针靠左阻值大),对于数字万用表来说可以直接读出读数。然后将电容放电(两根引线碰一下),然后两只表笔对调,重新进行测量。两次测量中,表针最后停留的位置靠左(或阻值大)的那次,黑表笔接的就是电解电容的正极。

⑦电容使用的一些经验及来四个误区。
一些经验:在电路中不能确定线路的极性时,建议使用无极电解电容。通过电解电容的纹波电流不能超过其充许范围。如超过了规定值,需选用耐大纹波电流的电容。电容的工作电压不能超过其额定电压。在进行电容的焊接的时候,电烙铁应与电容的塑料外壳保持一定的距离,以防止过热造成塑料套管破裂。并且焊接时间不应超过10秒,焊接温度不应超过260摄氏度。

四个误区:

●电容容量越大越好。

很多人在电容的替换中往往爱用大容量的电容。我们知道虽然电容越大,为IC提供的电流补偿的能力越强。且不说电容容量的增大带来的体积变大,增加成本的同时还影响空气流动和散热。关键在于电容上存在寄生电感,电容放电回路会在某个频点上发生谐振。在谐振点,电容的阻抗小。因此放电回路的阻抗最小,补充能量的效果也最好。但当频率超过谐振点时,放电回路的阻抗开始增加,电容提供电流能力便开始下降。电容的容值越大,谐振频率越低,电容能有效补偿电流的频率范围也越小。从保证电容提供高频电流的能力的角度来说,电容越大越好的观点是错误的,一般的电路设计中都有一个参考值的。

●同样容量的电容,并联越多的小电容越好,耐压值、耐温值、容值、ESR(等效电阻)等是电容的几个重要参数,对于ESR自然是越低越好。

ESR与电容的容量、频率、电压、温度等都有关系。当电压固定时候,容量越大,ESR越低。在板卡计中采用多个小电容并连多是出与PCB空间的限制,这样有的人就认为,越多的并联小电阻,ESR越低,效果越好。理论上是如此,但是要考虑到电容接脚焊点的阻抗,采用多个小电容并联,效果并不一定突出。

●ESR越低,效果越好。

结合我们上面的提高的供电电路来说,对于输入电容来说,输入电容的容量要大一点。相对容量的要求,对ESR的要求可以适当的降低。因为输入电容主要是耐压,其次是吸收MOSFET的开关脉冲。对于输出电容来说,耐压的要求和容量可以适当的降低一点。ESR的要求则高一点,因为这里要保证的是足够的电流通过量。但这里要注意的是ESR并不是越低越好,低ESR电容会引起开关电路振荡。而消振电路复杂同时会导致成本的增加。板卡设计中,这里一般有一个参考值,此作为元件选用参数,避免消振电路而导致成本的增加。

●好电容代表着高品质。

“唯电容论”曾经盛极一时,一些厂商和媒体也刻意的把这个事情做成一个卖点。在板卡设计中,电路设计水平是关键。和有的厂商可以用两相供电做出比一些厂商采用四相供电更稳定的产品一样,一味的采用高价电容,不一定能做出好产品。衡量一个产品,一定要全方位多角度的去考虑,切不可把电容的作用有意无意的夸大。

上拉与下拉

上拉电阻:

1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:

1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理

对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:

1. 驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2. 下级电路的驱动需求。同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3. 高低电平的设定。不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4. 频率特性。以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。上拉电阻的设定应考虑电路在这方面的需求。

下拉电阻的设定的原则和上拉电阻是一样的。

OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。

选上拉电阻时:
500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。

当输出高电平时,忽略管子的漏电流,两输入口需200uA
200uA x15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。选10K可用。COMS门的可参考74HC系列

设计时管子的漏电流不可忽略,IO口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话概括为:输出高电平时要喂饱后面的输入口,输出低电平不要把输出口喂撑了(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了)

本文引用地址: http://power.21ic.com//poc/technical/201803/60274.html

围观 422

在很多MCU中,都有上拉和下拉的概念,从8051到AVR再到ARM,都有!

上拉:

简单理解起来,上拉就是通过一个电阻接到高电平,在MCU中主要是为了提高芯片的驱动能力,如8051的P0口,在8051的PDF中,我们可以看到:

(1)每个单个的引脚,输出低电平的时候,允许外部电路,向引脚灌入的最大电流为 10 mA

(2)每个 8 位的接口(P1、P2 以及 P3),允许向引脚灌入的总电流最大为 15 mA,而 P0 的能力强一些,允许向引脚灌入的最大总电流为 26 mA;全部的四个接口所允许的灌电流之和,最大为 71 mA

MCU中上拉和下拉的意义

图中的 D1,是接在正电源和引脚之间的,这就属于灌电流负载,D1 在单片机输出低电平的时候发光。这个发光的电流,可以用电阻控制在 10 mA 之内。

图中的 D2,是接在引脚和地之间的,这属于拉电流负载,D2 应该在单片机输出高电平的时候发光。但是单片机此时几乎没有输出能力,必须采用外接“上拉电阻”的方法来提供 D2 所需的电流。

在引脚和大地之间有一个三极管,而pin则相当于三极管的基极,起到开关阀门的作用,使上面的电流可以通过LED,流到大地中。

此时,P2.0就起到这个作用,用小电流(不能点亮LED)来控制大电流,上拉电阻同时也起到限流的作用。

另外,为了防止临界电平引起误操作,也采用上拉电阻的方式,使得一个不确定的信号用电阻嵌定在高电平状态。减少意外发生。如ARM的中断就需要。

综上:设计单片机的负载电路,应该采用“灌电流负载”的电路形式,以避免无谓的电流消耗。

下拉:

下拉就是通过一个电阻接到低电平,把输出嵌位在低电平。同时对输出电流起到限流的作用,由于在实际中比较少用到,此处只是略微提一下。

转自: 金凡

围观 352

P0口作为I/O口输出的时候时,输出低电平为0 输出高电平为高组态(并非5V,相当于悬空状态,也就是说P0 口不能真正的输出高电平)。给所接的负载提供电流,因此必须接(一电阻连接到VCC),由电源通过这个上拉电阻给负载提供电流。

P0作输入时不需要上拉电阻,但要先置1。因为P0口作一般I/O口时上拉场效应管一直截止,所以如果不置1,下拉场效应管会导通,永远只能读到0。因此在输入前置1,使下拉场效应管截止,端口会处于高阻浮空状态,才可以正确读入数据。

由于P0口内部没有上拉电阻,是开漏的,不管它的驱动能力多大,相当于它是没有电源的,需要外部的电路提供,绝大多数情况下P0口是必需加上拉电阻的。

1.一般的P0口在作为地址/数据复用时不接上拉电阻。
2.作为一般的I/O口时用时,由于内部没有上拉电阻,故要接上上拉电阻!!
3.当p0口用来驱动PNP管子的时候,就不需要上拉电阻,因为此时的低电平有效;
4.当P0口用来驱动NPN管子的时候,就需要上拉电阻的,因为此时只有当P0为1时候,才能够使后级端导通。 简单一点说就是它要驱动LCD显示屏显示就必须要有电源驱动,否则亮不了,而恰好P0口没有电源,所以就要外接电源,接上电阻是起到限流的作用;如果接P1、P2、P3端口就不用外接电源和电阻了。

P0口是开漏的,不管它的驱动能力多大,相当于它是没有电源的,需要外部的电路提供,绝大多数情况下P0口是必需加上拉电阻的;5、51单片机的P0口用作数据和地址总线时不必加上拉电阻。

有些IC的驱动能力并不强,如果P0口作为输入而加了不必要的上拉,有可能驱动IC无法将其拉回到低电平,从而使输入失败!

如果是驱动led,那么用1K左右的就行了。如果希望亮度大一些,电阻可减小,最小不要小于200欧姆,否则电流太大;如果希望亮度小一些,电阻可增大,增加到多少呢,主要看亮度情况,以亮度合适为准,一般来说超过3K以上时,亮度就很弱了,但是对于超高亮度的LED,有时候电阻为10K时觉得亮度还能够用。通常就用1k的。对于驱动光耦合器,如果是高电位有效,即耦合器输入端接端口和地之间,那么和LED的情况是一样的;如果是低电位有效,即耦合器输入端接端口和VCC之间,那么除了要串接一个1——4.7k之间的电阻以外,同时上拉电阻的阻值就可以用的特别大,用100k——500K之间的都行,当然用10K的也可以,但是考虑到省电问题,没有必要用那么小的。

对于驱动晶体管,又分为PNP和NPN管两种情况:对于NPN,毫无疑问NPN管是高电平有效的,因此上拉电阻的阻值用2K——20K之间的,具体的大小还要看晶体管的集电极接的是什么负载,对于LED类负载,由于发管电流很小,因此上拉电阻的阻值可以用20k的,但是对于管子的集电极为继电器负载时,由于集电极电流大,因此上拉电阻的阻值最好不要大于4.7K,有时候甚至用2K的。对于PNP管,毫无疑问PNP管是低电平有效的,因此上拉电阻的阻值用100K以上的就行了,且管子的基极必须串接一个1——10K的电阻,阻值的大小要看管子集电极的负载是什么,对于LED类负载,由于发光电流很小,因此基极串接的电阻的阻值可以用20k的,但是对于管子的集电极为继电器负载时,由于集电极电流大,因此基极电阻的阻值最好不要大于4.7K。

对于驱动TTL集成电路,上拉电阻的阻值要用1——10K之间的,有时候电阻太大的话是拉不起来的,因此用的阻值较小。但是对于CMOS集成电路,上拉电阻的阻值就可以用的很大,一般不小于20K,我通常用100K的,实际上对于CMOS电路,上拉电阻的阻值用1M的也是可以的,但是要注意上拉电阻的阻值太大的时候,容易产生干扰,尤其是线路板的线条很长的时候,这种干扰更严重,这种情况下上拉电阻不宜过大,一般要小于100K,有时候甚至小于10K。

根据以上分析,上拉电阻的阻值的选取是有很多讲究的,不能乱用。

来源: 21ic

围观 341

本篇文章对于上拉电阻在单片机当中的重要作用进行了细致的介绍,相信在阅读过本篇文章之后,大家对于为什么要在单片机中添加上拉电阻有了一定的认识。希望大家在阅读过本篇文章之后能够有所收获。

在单片机系统当中,上拉电阻逐渐成为了最为稳定也最为可靠的主要组成部分。大多数人知道上拉电阻在单片机系统当中的重要作用,但却不知道为什么如此重要。

本篇文章就将为大家解释上拉电阻的重要性,为什么管脚和单片机大部分都要接上拉电阻呢? 专家称管脚和单片机接上拉电阻是必然的,上拉电阻和下拉电阻相比,上拉电阻要更胜一筹。

众所周知,上拉电阻就是将不确定的信号通过一个电阻钳位在高电平,输入电流,电阻同时起到限流的作用。阻值的强弱只是上拉电阻的组织不同,实际上并没有什么严格区分。对于非集电极开路输出型电路或漏极开路输出型电路来说,上拉在这种类型的电路中对提升电流和电压的能力是有限的,它的主要功能还是为集电极开路输出型电路输出电流通道。

通常来说,在管脚接上拉、下拉的设计方面有两个原因直接决定了上拉电阻的接入。一是在正常工作或单一故障状态下,管脚都是不应该出现不定状态的,如接头脱落后导致的管脚悬空情况。 二是从机体的功耗角度出发,长时间处于管脚等待状态下,管脚端口的电阻上不能消耗太多电流,这一点对电池供电设备的使用寿命和安全性来说尤为重要。

从抗扰的角度来说,信号端口也应当优先选择上拉电阻。接入上拉电阻时,在待机状态下源端输入常为高阻态。此时如果没有上拉电阻的接入,那么输入导线将会呈现天线效应,一旦管脚受到了辐射干扰,管脚输入状态就非常容易被感应发生变化。

除此之外,管脚接入上拉电阻后,最重要的一点就是能够提供一个泄流通道,防止高电平干扰。如果此时出现了强辐射干扰,强度甚至超过了Vcc的电平,那么导线上的高电平干扰会通过上拉电阻提供的泄流通道泻放到Vcc上去。因此,无论是怎样的辐射干扰,都不会产生误触发的情况,对系统的安全性能提供了极大的保障。

最近,一些工程师在处理IIC单片机接口的工作问题时,对外部接上拉电阻的做法感到疑惑。

由于单片机内部已经设置了上拉电阻,对于外部是否还需要接上拉的情况业界一直存在争议。 由于一些单片机型号内部就设置了上拉电阻,因此有些上拉能力够了,是可以不加上拉电阻,有些不够,那就必须在外部加上拉电阻。

在这种情况下,主要是取决于工程师所使用的单片机是否有标准的IIC标准接口。如果单片机使用了标准的IIC接口,那么接口在使能时引脚将进入漏极开路模式,可以省去外部接入的上拉电阻。但如果是使用单片机的引脚模拟IIC协议的话,就需要结合单片机引脚是否支持漏极开路模式或者上拉模式来进行判断,这种情况下一般是需要接入一个外部的上拉电阻的。

除此之外,在IIC接口接入上拉电阻,也可以起到保护作用。

由于I2C接口在工作时主要负责的是对高低电平检测的作用,一旦没有了上拉电阻的保护而直接接电源,出现器件拉低时整个系统就非常危险。根据I2C总线规范,总线空闲时两根线都必须为高。根据IIC总线规范的要求,总线空闲时两根线都必须为高。但由于IIC接口采用OpenDrain机制,本身只能输出低电平而无法主动输出高电平,所以只能通过外部上拉电阻RP将信号线拉至高电平。因此I2C总线上的上拉电阻是必须要接入的。

来源: 21ic

围观 390

本文主要介绍相关接口电路的基本概念:

在电路中常会遇到漏极开路(Open Drain)和集电极开路(Open Collector)两种情形。漏极开路电路概念中提到的“漏”是指 MOSFET的漏极。同理,集电极开路电路中的“集”就是指三极管的集电极。在数字电路中,分别简称OD门和OC门。

1、集电极开路输出

典型的集电极开路电路如图所示。电路中右侧的三极管集电极什么都不接,所以叫做集电极开路,左侧的三极管用于反相作用,即左侧输入“0”时左侧三极管截止,VCC通过电阻加到右侧三极管基极,右侧三极管导通,右侧输出端连接到地,输出“0”。

从图中电路可以看出集电极开路是无法输出高电平的,如果要想输出高电平可以在输出端加上上拉电阻。因此集电极开路输出可以用做电平转换,通过上拉电阻上拉至不同的电压,来实现不同的电平转换。

用做驱动器。由于OC门电路的输出管的集电极悬空,使用时需外接一个上拉电阻Rp到电源VCC。OC门使用上拉电阻以输出高电平,此外为了加大输出引脚的驱动能力,上拉电阻阻值的选择原则,从降低功耗及芯片的灌电流能力考虑应当足够大;从确保足够的驱动电流考虑应当足够小。

将OC门输出连在一起时,再通过一个电阻接外电源,可以实现“线与”逻辑关系。只要电阻的阻值和外电源电压的数值选择得当,就能做到既保证输出的高、低电平符合要求,而且输出三极管的负载电流又不至于过大。

集电极开路输出除了可以实现多门的线与逻辑关系外,通过使用大功率的三极管还可用于直接驱动较大电流的负载,如继电器、脉冲变压器、指示灯等。

2、漏极开路输出

和集电极开路一样,顾名思义,开漏电路就是指从MOSFET的漏极输出的电路。典型的用法是在漏极外部的电路添加上拉电阻到电源如图所示。完整的开漏电路应由开漏器件和开漏上拉电阻组成。这里的上拉电阻R的阻值决定了逻辑电平转换的上升/下降沿的速度。阻值越大,速度越低,功耗越小。因此在选择上拉电阻时要兼顾功耗和速度。标准的开漏脚一般只有输出的能力。添加其它的判断电路,才能具备双向输入、输出的能力。

很多单片机等器件的I/O就是漏极开路形式,或者可以配置成漏极开路输出形式,如51单片机的P0口就为漏极开路输出。在实际应用中可以将多个开漏输出的引脚连接到一条线上,这样就形成“线与逻辑”关系。注意这个公共点必须接一个上拉电阻。当这些引脚的任一路变为逻辑0后,开漏线上的逻辑就为0了。在I2C等接口总线中就用此法判断总线占用状态。

同集电极开路一样,利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经上拉电阻,再经MOSFET到GND。IC内部仅需很下的栅极驱动电流,因此漏极开路也常用于驱动电路中。



3、推挽输出

在功率放大器电路中经常采用推挽放大器电路,这种电路中用两只三极管构成一级放大器电路,如图所示。两只三极管分别放大输入信号的正半周和负半周,即用一只三极管放大信号的正半周,用另一只三极管放大信号的负半周,两只三极管输出的半周信号在放大器负载上合并后得到一个完整周期的输出信号。

推挽放大器电路中,一只三极管工作在导通、放大状态时,另一只三极管处于截止状态,当输入信号变化到另一个半周后,原先导通、放大的三极管进入截止,而原先截止的三极管进入导通、放大状态,两只三极管在不断地交替导通放大和截止变化,所以称为推挽放大器。输出既可以向负载灌电流,也可以从负载抽取电流

4、上拉电阻与下拉电阻

在嵌入式接口的相关应用中经常提到上拉电阻与下拉电阻,顾名思义,上拉电阻就是把端口连接到电源的电阻,下拉电阻就是把端口连接到地的电阻。虽然电路形式非常简单,然而上拉电阻与下拉电阻在很多场合却扮演着非常重要的作用。简单的说,上拉电阻的主要作用在于提高输出信号的驱动能力、确定输入信号的电平(防止干扰)等,具体的表现为:

当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V), 这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。

OC门电路必须加上拉电阻,以提高输出的搞电平值。

为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。

在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。

芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。

提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。

长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。

上拉电阻阻值的选择原则包括:

从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。

从确保足够的驱动电流考虑应当足够小;电阻小,电流大。

对于高速电路,过大的上拉电阻可能边沿变平缓。

综合考虑以上三点,通常在1K到10K之间选取。对下拉电阻也有类似道理。

5、嵌入式微控制器的I/O配置

上面介绍了嵌入式系统接口设计中相关的接口电路和概念,嵌入式微控制器的I/O是在嵌入式系统设计中最常用到的接口,很多微控制器的I/O口可以进行灵活配置。

基本结构如图所示,从图中可以看到典型的推挽输出电路与上下拉电阻,当N-MOS被激活时就变成了典型的开漏输出模式,当N-MOS和P-MOS同时被激活时就变成了典型的推挽输出模式,通过上拉电阻和下拉电阻的开关控制可以使端口处于上拉或者下拉输入模式。

根据开漏输出和推挽输出的特点,可以很容易判断在以下应用中应当工作在推挽输出模式(或者复用推挽输出):

驱动应用中,驱动LED、蜂鸣器等

USART_TX、USART_CK、USART_RTS、MOSI、SPI主模式SCK、CAN_TX等需要较强驱动能力的场合

而在I2C等接口总线应用中,由于需要“线与”判断总线占用状态,以及需要使用电平转换的场合需要将I/O配置成开漏输出的模式。

(直接点击图片可进入调查页面)

开发板测评图片
围观 710
订阅 RSS - 上拉电阻