15种不同输出电流配置,这些电源转换器设计都给你想全啦~

cathy的头像
cathy 发布于:周二, 05/07/2024 - 18:16 ,关键词:

当今的工业电子系统包含了许多与消费电子产品相同的组件,如微控制器、FPGA、片上系统 ASIC 及其他电子器件,因而在众多不同的负载电流条件下需要多个低电压轨。另外,工业应用还需要一个按钮接口、一个始终保持接通的电源以用于实时时钟 (RTC) 或存储器、以及从一个高电压电源获得输入功率的能力。其他所需的特性可能包括一个看门狗定时器 (WDT)、一个总停或复位按钮、软件可调的电压电平、以及低输入/输出电压和高芯片温度的错误报告功能。

LTC3375是一款高度可配置的多输出降压型电源转换器,其拥有工业电子设备通常所需的特性,并可灵活地配置最大电流范围为1A至4A的各种输出。

可配置的最大输出电流

LTC3375 的 8 个 1A 通道可通过不同结合以产生 1A、2A、3A 和 4A 降压稳压器的各种组合,如表 1 中列出的15种不同输出电流配置。

1.png

表 1:LTC3375 最大电流配置

把某个给定通道的反馈引脚连接至其 VIN 引脚可将该通道配置为相邻通道的从属通道。将两个通道的开关引脚连接在一起以共用单个电感器和输出电容器。主 / 从通道利用主稳压器的使能引脚来启用,并调节至主稳压器的反馈网络。

通过连接更多的相邻通道可把输出电流增加至 3A 或4A。图 1 中的电路示出配置了一个 3A 输出、一个 1A输出、两个 2A 输出和一个始终保持接通的 LDO 之LTC3375。该图还说明了怎样连接LTC3375以通过片内按钮接口来控制一个上游外部降压控制器的启动,从而向LTC3375 降压稳压器提供输入功率。

2.png

图 1:低电压电源具有按钮控制的上游 HV 降压转换器和始终保持接通的 LDO

外部 VCC LDO 和外部输入电源启动控制

LTC3375 能够控制一个外部 LDO 传输器件以提供其VCC 电源,并为其他任何低电流电子组件 (例如:一个RTC) 供电。VCC 负责给内部按钮电路、WDT、内部寄存器和漏极开路上拉电阻供电。图 1 中的外部 LDO可采用24V电压轨产生一个3.3V电源。

当揿压按钮时,ON 引脚被释放且 LTC3891 上的 RUN引脚被拉至高电平,从而为 LTC3375 的降压转换器提供输入功率。当 LTC3891 实现稳压时,PGOOD 引脚被释放,启用 LTC3375 的 EN1 并接通 2A 稳压器。其余的稳压器可利用具精准门限的使能引脚或通过软件控制型 I2C 命令来启用。再次揿压按钮并保持 10 秒或更长的时间,或者将 KILL 拉至低电平并持续 50ms或更久,将导致 ON 引脚被拉至低电平,从而停用所有的降压稳压器。

独特的功率控制与特性

I2C 接口可提供大量的稳压器操作控制。每个稳压器可以设定为执行高效率的突发模式 (Burst Mode®) 操作以在轻负载条件下节省功率,也可设定为强制连续模式以实现较低的输出纹波电压。另外,每个稳压器还可以使开关周期相移0°、90°、180°或270° (相对于基准时钟),以在多个输出为大负载供电时提供一个较低的输入纹波电流。另一个特性是能够通过调节反馈基准电压 (从默认的 725mV 设定值进行调节,步进为25mV,调节范围从 425mV 至 800mV) 来操控每个输出电压的上升或下降。此外,I2C 接口还用于报告每个稳压器的错误状况。

LTC3375 具有一个复位 (RST)) 引脚和一个中断请求(IRQ) 引脚,其可通过编程以在任何稳压器的输出电压降至调节点的 92.5% 以下时进行报告。IRQ 引脚还可设置为在输入电压降至低于欠压闭锁 (UVLO) 门限或者芯片温度达到设定温度门限时进行报告。稳压器的 PGOOD 和 UVLO 状态、芯片温度警报和实测芯片温度可利用微处理器通过I2C接口进行监视。

微处理器存在的一个问题是软件错误会导致程序中止。LTC3375 具有一个看门狗定时器输入 (WDI) 引脚,用于监视SCL引脚或其他某个引脚以确定软件是否仍在运行。如果软件已经停止运行,则可采用看门狗定时器输出(WDO)引脚来使微处理器复位,或切断高电压 (HV) 降压转换器和 LTC3375 降压稳压器的供电。当WDT条件不满足时,把WDO引脚连接至微处理器的 RST 引脚将致使微处理器发生复位。把 WDO引脚连接至  KILL  引脚将导致 ON 引脚电平走低,从而停用 HV 降压转换器和所有 LTC3375 稳压器。万不得已时,可利用一个按钮“纸夹”开关将 KILL 引脚拉至低电平以使所有的稳压器断电。

结论

LTC3375 可配置为具有多个稳定的 1A 至 4A 输出 (总共高达 8A),并拥有当今工业电子设备所需要的诸多特性。

来源:亚德诺半导体

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 17