51单片机

定时/计数器结构(T0和T1)
51单片机 | 定时/计数器原理及结构
16位寄存器T0、T1分别由TH0、TL0和TH1、TL1四个8位计数器组成

  • 定时器的区别:

    • T0可分成2个独立的8位定时器,而定时器1则不能;
    • T1可作为串口的波特率发生器,而定时器0则不能。
  • 工作原理

    • 用途:定时器和计数器
    • 核心:加1计数器
    • 原理:每来一个脉冲则加1计数器加1,当加到全1时再来一个脉冲使加1计数器归零,同时加1计数器的溢出使TCON寄存器中的TF0(或TF1)置1,向CPU发出中断请求
    • 脉冲来源:

      • 定时器:脉冲来源是由系统的时钟晶振器输出脉冲源提供
      • 计数器:脉冲来源是由T0或T1引脚(P3.4或P3.5)输入的外部脉冲源提供

注:T0或T1都不能同时既做定时器也做计数器

补充:

  • 计数器工作原理:

    用作计数器时,对T0或T1引脚的外部脉冲计数,如果前一个机器周期采样值为1,后一个机器周期采样值为0 ,则说明有一个脉冲,计数器加1。

    在每个机器周期的S5P2期间采样引脚输入电平。新的计数初值于下一个机器周期的S3P1期间装入计数器。

    此种方式需要两个机器周期来检测一个1->0负跳变信号,因此最高的计数频率为时钟频率的1/24。

  • S5P2:

    S5P2指的是第5个时钟周期的相位2。

    晶体振荡器的振荡信号从XTAL2端输入到片内的时钟发生器上,时钟发生器是一个二分频触发器电路,它将振荡器的信号频率除以2,向CPU提供了两相时钟信号P1和P2。时钟信号的周期称为机器状态时间S,它是振荡周期的2倍。在每个时钟周期(即机器状态时间S)的前半周期,相位1(即P1信号)有效,在每个时钟周期的后半周期,相位2(即P2信号)有效。

使用的寄存器

  • TCON控制寄存器:启动和停止定时/计数器的计数,并控制定时器的工作状态,不能按位寻址
  • 51单片机 | 定时/计数器原理及结构
  • TMOD方式寄存器:设置定时器的工作方式,选择定时或计数的功能,可以按位寻址。(和中断共用寄存器,高四位为定时计数器使用,低四位为中断使用)
  • 51单片机 | 定时/计数器原理及结构51单片机 | 定时/计数器原理及结构

    注:GATE逻辑结构此处略过

工作方式:

  • 方式0
    • 计算公式:
      51单片机 | 定时/计数器原理及结构
    • 最大计数:8192个机器周期
    • 工作原理:
      13位计数器,使用TL0的低5位和TH0的高8位组成,TL0的低5位溢出时向TH0进位。TH0溢出时发出中断请求。
      51单片机 | 定时/计数器原理及结构
  • 方式1
    • 计算公式:
      51单片机 | 定时/计数器原理及结构
    • 最大计数:65536个机器周期
    • 工作原理:
      16位计数器,TL0作为低8位,TH0作为高8位
      51单片机 | 定时/计数器原理及结构
  • 方式2:自动重装初值的8位计数方式
    • 计算公式:
      p.s.晶振频率必须选择12的整数倍,因为定时器的频率是晶振频率的1/12。
      51单片机 | 定时/计数器原理及结构
    • 最大计数:256个机器周期
    • 优点:
      适合做比较精准的脉冲信号发生器
    • 缺点:
      51单片机 | 定时/计数器原理及结构
    • 工作原理:
      计数器溢出后,计数器自动将上次设置的初值重装。
      51单片机 | 定时/计数器原理及结构
  • 方式3:p.s.只能用于定时/计数器T0,T0工作在方式3时,T1不要使用在有中断的场合。通常该种情况下T1用作串口波特率发生器
    • 工作原理:
      将T0分成两个独立的8位定时/计数器TL0和TH0。

      TL0为正常的8位定时/计数器,计数器溢出后置位TF0,申请中断,之后重装初值。

      TH0也是8位定时/计数器,但由于TL0占用了TF0和TR0,因此TH0占用定时器TF1和TR1(所以T1不能用)
      51单片机 | 定时/计数器原理及结构

时钟周期/机器周期计算:
51单片机 | 定时/计数器原理及结构

定时/计数器初始化

  • 对TMOD赋值,确定T0和T1的工作方式
  • 计算初值,并将其写入TH.x和TL.x
  • 使用中断方式时对IE寄存器赋值开发中断
  • 使TR0或TR1置位,启动定时/计数器

转自: hugh.dong

围观 5
41

近年来,电子门禁系统发展非常迅速,按照其开门方式可以分为3类:密码识别、卡片识别和生物识别。
  
无线射频识别技术(RFID)在门禁系统中得到广泛的应用,本例中以使用工作频率为125KHz的射频ID卡和密码识别相结合的门禁系统为例,说明单片机控制门禁系统的原理及应用。
  
本门禁系统主要应用于居民小区的居民楼,其工作原理如下:当有人要进入时,可以通过以下两种方式实现:

一是通过在门禁处主机上刷卡,当该卡为门禁系统中存在的ID卡时,门可以打开,否则,语音提示该卡不存在;

二是输入房间号码+密码的方式开门,若有访客要进入时,访客可以提前和住户联系,获得住户的房间号和密码,当访客输入正确的房间号和密码后,楼宇门可以打开,否则提示密码错误。

系统的结构图如下图所示。

基于51单片机控制门禁系统的设计

系统包括门禁管理机、门禁处主机以及上位管理机。
  
门禁管理机主要完成门禁系统发卡、挂失卡以及与PC机通信等操作,硬件电路包括:
  
CPU、射频卡读卡器电路、RS-485通信电路、电源电路等。
  
门禁处主机完成对进入楼宇门的控制及判断操作,另外需要与PC机通信,获得系统中存在的ID卡编号及其他信息。硬件电路包括:CPU、电源电路、键盘显示电路、射频卡读卡器电路、存储器电路、语音电路、电磁锁控制电路等。
    
1.门禁主机硬件设计
  
门禁主机由CPU、键盘显示电路、存储器、射频卡读卡器、通信电路、语音电路和电源电路等组成。原理框图如下图所示。
基于51单片机控制门禁系统的设计

(1)增强型51单片机。
  
单片机选用体积小、功能强、存储器容量大的C8051F340。该单片机是一款完全集成的混合信号片上系统型MCU,片上有4352字节的RAM(256B片内RAM和4KB片外RAM),多达64KB的片内Flash存储器,具有一个内部可编程高速振荡器,可以作为系统时钟使用,片内集成了看门狗定时器功能,只需要极少的外围电路就可以构成单片机最小应用系统,电路设计简单,可以提供较多的I/O口,可以灵活配置中断引脚及I/O口的输入/输出方式。
  
(2)存储器电路。
  
由于在系统中要存储一定数量的射频ID卡号、开门记录以及其他的信息,所需要的存储器空间比较大,存储器选用Flash型的AT45DB041D存储器,这是单一2.7V~3.6V电源供电串行接口Flash存储卡,适用于系统内重复编程,它共有4325376bit内存,分为2048页,每页为264字节;在主内存之外AT45DB041D还有两个SRAM数据缓存,每个264字节,缓存使得主内存的一页正在编程的同时可以接收数据。与用多条地址线和一个并行接口随机访问的传统Flash存储器不同,其数据闪存DataFlash采用串行接口顺序访问数据,这种简单的串行接口方便了硬件布局,增强了系统灵活性。存储器电路原理如下图所示。
  
AT45D041D为SPI总线的器件,在系统中使用单片机管脚模拟SPI总线的方式实现了对存储器芯片的读写操作。
基于51单片机控制门禁系统的设计

(3)键盘显示电路。
  
键盘显示电路采用专用的控制芯片HD7279A来驱动,该芯片最多能驱动8位共阴极数码管及64个键盘,单片即可完成LED显示、键盘接口的全部功能,使设计的电路更加简洁。
  
HD7279A同样也是SPI总线的器件,在键盘显示电路中也是通过单片机管脚模拟SPI总线的方式实现对HD7279A的操作。键盘显示电路原理如下图所示。键盘显示由8个数码管以及13个按键组成,其中的12个键为10个数字键、“*”建和“#”键,另外1个按键作为楼道内开门的按键使用。
基于51单片机控制门禁系统的设计

(4)语音电路。
  
在本系统中对语音质量要求不高,而且语音提示信息不是很长,我们选用了价格低廉的APLUS公司生产的语音芯片AP89170,这是一款OTP的语音芯片,声音的最大存储长度可以达到170s,芯片可以最多存储254个语音片段。功率放大电路采用专用的语音放大器LM386,该放大器的增益可以调整,在使用过程中比较灵活。语音电路原理如下图所示。
基于51单片机控制门禁系统的设计

(5)射频卡读卡器电路。
  
本例中门禁系统使用工作频率为125kHz的EM4100卡作为系统使用的射频卡。125kHz的射频卡读卡器电路可以由模拟电路和集成电路芯片电路两种方式实现。由于模拟电路设计复杂、调试难度大,所以系统的射频卡读卡器电路选用专用的低成本读卡器芯片U2270B实现,这是由美国TEMIC公司生产的、发射频率为125kHz的射频卡基站芯片,其载波振荡器能产生l00kHz~150kHz的振荡频率,其典型应用频率为125kHz,此时,典型数据传输速率为Skbit/s,典型读写距离为15cm。适用于曼彻斯特编码和双相位编码,并带有微处理器接口,可与单片机直接连接。另外,供电方式灵活,可以采用+5V直流供电,也可以采用汽车用+12V供电,同时具有电压输出功能,可以给微处理器或其他外围电路供电。具有低功耗待机模式,可以极大地降低基站的耗电量。其典型的应用电路原理如下图所示。
基于51单片机控制门禁系统的设计

图中Fl为射频卡读卡器天线线圈,线圈的电感值为680μH,使用漆包线缠绕制成,单片机通过P0.0读出U2270B送出的ID卡号。

作者:宏源祥147
转自:
广电电器网

围观 7
76

位数指CPU处理的数据的宽度,参与运算的寄存器的数据长度。

如果总线宽度与CPU一次处理的数据宽度相同,则这个宽度就是所说的单片机位数。

如果总线宽度与CPU一次处理的数据宽度不同:

(1)总线宽度小于CPU一次处理的数据宽度,则以CPU的数据宽度定义单片机的位数,但称为准多少位。比如著名的Intel 8088,CPU是16位但总线是8位,所以它是准16位。

(2)总线宽度小于CPU一次处理的数据宽度,则以CPU的数据宽度定义单片机的位数。

少位宽不是指总线宽度,也不是存储器的宽度,像51单片机的地址总线是16位的,但是它是8位机。像ARM的存储器也有八位的,但是它是32位机。而是指CPU处理的数据的宽度,也就是CPU一次数据的吞吐量。比如同一条指令:MOV R0 R2

在51单片机里面,R0和R2都是8位的,所以51的CPU一次只能处理8位数据。

在ARM里面,R0和R2是32位的,所以ARM的CPU一次能处理32位数据。这就是区别。

有啥复杂的, 一句话:参与运算的寄存器的数据长度。

8位单片机的数据总线宽度为8位,通常直接只能处理8位数据;

16位单片机的数据总线宽度为16位,通常可直接处理8位或16位数据。

最本质的区别是内部CPU的字长不同,即CPU处理数据的最大位数不同,有8位和16位CPU的区别,你可以认为是ALU、寄存器的字长等。有的32位DSP芯片其外部接口数据总线是16位的,根据这个来判断是不行的

速度上有区别,取决于CPU、寄存器的字长。8位单片机不能直接处理16位数据,要按照8位数据来处理,要分几个过程来完成。而16位单片机,可直接处理16们数据,因为其ALU,寄存器等都是16位的,可一次完成8位单片机要多步完成的动作,特别是对于数据处理,16位单片机有它的优势。而且16位单片机大多数据接口都为16位。

说简单了就是16位的比8位快,8位的单片机发展时间长,且价格偏低。最重要的是在许多的应用场合能够胜任开发的任务。16位的单片机在功能上要比8位的强大很多,只在需要的场合使用。

你知道2进制吧,你是否知道单片机在进行计算的时候统统是2进制数的运算。所以8位单片机和16位单片机的最根本区别就是,8位单片机可以同时进行2个8位的2进制数相加,而16位单片机则大一倍,可以同时让2个16位的2进制数相加。

CPU能同时处理二进制数的位数是多少位,就称其是多少位的计算机。也有数据总线的位数是CPU位数的一半的情况,就称其是准多少位的计算机。比如CPU是16位,数据总线也是16位,则是16位计算机;CPU是16位,数据总线也是8位,则是准16位计算机。

原来是16位单片机想改用8位的替代是可以的,但电路及程序都要做相应改变,并且改为8位机后,在功能和速度上要能够满足你工作的需要才行。

来源: 嵌入式资讯精选

围观 13
76

在51单片机的学习过程中,我们经常会发现中断、计数器/定时器、串口是学习单片机的难点,对于初学者来说,这几部分的内容很难理解。但是我个人觉得这几部分内容是单片机学习的重点,如果在一个学期的课堂学习或者自学中没有理解这几部分内容,那就等于还没有掌握51单片机,那更谈不上单片机的开发了,我们都知道在成品的单片机项目中,有很多是以这几部分为理论基础的,万年历是以定时器为主的,报警器是以中断为主的,联机通讯是以串口为主的。

计数器和定时器的本质是相同的,他们都是对单片机中产生的脉冲进行计数,只不过计数器是单片机外部触发的脉冲,定时器是单片机内部在晶振的触发下产生的脉冲。当他们的脉冲间隔相同的时候,计数器和定时器就是一个概念。

在定时器和计数器中都有一个溢出的概念,那什么是溢出了。呵呵,我们可以从一个生活小常识得到答案,当一个碗放在水龙头下接水的时候,过了一会儿,碗的水满了,就发生溢出。同样的道理,假设水龙头的水是一滴滴的往碗里滴,那么总有一滴水是导致碗中的水溢出的。在碗中溢出的水就浪费了,但是在单片机的定时计数器中溢出将导致一次中断,至于什么是中断我们下次再讲,这里只是初步的提下概念,中断就是能够打断系统正常运行,而去运行中断服务程序的过程,当服务程序运行完以后又自动回到被打断的地方继续运行。

在定时器计数器中,我们有个概念叫容量,就是最大计数量。方式0是2的13次方,方式1是2的13次方,方式2是2的8次方,方式3是2的8次方。把水滴比喻成脉冲,那么导致碗中水溢出的最后一滴水的就是定时计数器的溢出的最后一个脉冲。

在各种单片机书本中,在介绍定时计数器时都讲到一个计数初值,那什么是计数初值呢?在这里我们还是假设水滴碗。假设第一百滴水能够使碗中的水溢出,我们就知道这个碗的容量是100。问题1,我如何才能使碗接到10滴水就溢出呢?呵呵,我可以想象,如果拿一个空碗去接水,那么还是得要100滴水才能溢出,但是如果我们拿一个已经装有水的碗拿去接,那就不用100滴了。到此我们可以算出,要使10滴水让碗中的水溢出,那么碗中就先要装90滴水。

在定时计数器中,这90滴水就是我们所谓的初始值。问题2,在一个车间我们如何利用单片机对100件产品进行计件,并进行自动包装呢?

我们可以利用计数器计数100,在中断中执行一个自动包装的动作就可以了。

在这里计数初值有3个,假设有方式0:计数初值=8912(2的13次方)—100=8812。方式1:计数初值=65536(2的16次方)—100=65436。方式0:计数初值=256(2的8次方)—100=156。

根据所得的初始值,再将其转换为16进制或者2进制,就可以进行计数或者定时了。当然要让程序完全的运行起来还需要相应的寄存器进行设置。

来源:网络

围观 8
299

这里不说步进电机的 "细分" 实验,只说一下有关步进电机的基础概念以及步进电机的三种工作方式——单拍、双拍、单双拍,现在步进电机的编程一般都要用到专门的步进电机驱动芯片(如:L6219芯片),所以具体的编程下次再讲。先说一下相、线和极性。

一:线、相、极性

"相" 就是说明步进电机有几个线圈(也叫做绕组)。

"线" 就是说明步进电机有几个接线口。

"极性" 分为 单极性 和 双极性。如果步进电机的线圈是可以双向导电的,那么这个步进电机就是双极性的,相反,如果步进电机的线圈是只允许单向导电的,那么这个步进电机就是单极性的。

上面的三个只要知道其中两个,就可以推断出第三个。

如:

五线四相步进电机 就是有5个接线口,4个线圈。

由于有五个接线头,即接线头的个数是奇数个,也就是说有一个接线头是公共接头,所以它的线圈的导电方式就只允许是 单向的 ,即这个步进电机是单极性的。如下图:

51单片机--巧记步进电机相关知识

四线双极性步进电机就是有4个接线口,导电方式是允许双向的。

由于有四个接线口,且导电方式是双向的,所以这个步进电机是两相的。

51单片机--巧记步进电机相关知识

二、步进电机的步进方式:单拍、双拍、单双拍

1、单拍:(单四拍工作方式)

单拍工作方式就是说每次只给一个线圈通电,通过改变每次通电的线圈从而使步进电机转动。

先说五线四相步进电机,假设它的四个线圈叫做 A、B、C、D,那么在单拍工作方式下,线圈的通电方式依次是:A、B、C、D;

然后是四线双极性步进电机,假设它的两个线圈叫做 A、B,那么在单拍工作模式下,线圈依次是:A、B、-A、-B;

【注】A、B指的是A、B线圈通正向电流,-A、-B指的是A、B线圈通反向电流。由于五线四相步进电机无法通反向电流,所以只有A、B、C、D。

当然上面说的都仅仅只是理论,我们记忆的话自然有简便方法:

下面是五线四相步进电机:

51单片机--巧记步进电机相关知识

下面是四线双极性步进电机:
51单片机--巧记步进电机相关知识

2、双拍:(双四拍工作方式)

双拍工作方式就是:每次给两个线圈通电,通过改变通电的线圈从而使步进电机转动。
五线四相步进电机:在双拍工作方式下,线圈的通电方式依次是:AB、BC、CD、DA;
四线双极性步进电机,在双拍工作模式下,线圈的通电方式依次是:AB、B-A、-A-B、-BA;
大家很容易找出规律吧。

3、单双拍(八拍工作方式)

单双拍工作方式就是单拍工作方式和双拍工作方式交替进行。

五线四相步进电机:A、AB、B、BC、C、CD、D、DA;

四线双极性步进电机:A、AB、B、B-A、-A、-A-B、-B、-BA;

大家只要对照上面我画的那张图,就可以会很容易的记住了。

最后再说一下步距角:

51单片机--巧记步进电机相关知识

步距角一般用在步进电机的高级应用中,我们初学者(我也是初学者)一般还不用考虑,我只是为了讲解全面一些加上了步距角,大家有兴趣的可以看看上面的图片。

好了,有关步进电机的相关基础就说到这里了。

转自: :C博客:飞鸟丶岚

围观 7
182

89C51芯片没有自带PWM发生器,如果要用51来产生PWM波就必须要用软件编程的方法来模拟。方法大概可以分为软件延时和定时器产生两种方法。下面将逐一介绍。

1 软件延时法

利用软件延时函数,控制电平持续的时间,达到模拟pwm的效果。

程序如下:

#include<reg52.h>
sbit pwm=P1^0;
main()
{
while(1)
{
 
pwm=1;
delayus(60);//置高电平后延时60us,占空比60%
pwm=0;
delayus(40);
}
}
void delayus(uint x)
{
while(x--);
}

proteus软件仿真结果如下:

51单片机产生PWM方法

可见,用这种延时函数的方法就能简单地模拟出pwm输出。但是这种方法的缺点也相当明显。当程序除了要输出pwm波还要执行其他操作比如键盘扫描、显示等操作时,需要占用CPU一定的机器周期,这样就会影响pwm的准确度。现在很少会用到这种方法,接下来要介绍的是比较常用的方法。

2 定时器产生pwm

这种方法利用了定时器溢出中断,在中断服务程序改变电平的高低,在程序较复杂、多操作时仍能输出较准确的pwm波形。

2.1 注意事项

2.2.1中断服务程序的内容。

一般来说中断服务程序只完成改变标志位、转换高低电平的功能,如果中断服务程序中有太多的操作会影响pwm波的输出,尤其是除法、取余、浮点数运算会占用大量的机器周期,应在中断外完成运算。
2.2.2定时器装入初值的问题。

装入初值不能太接近于定时器的溢出值。如我们使用定时器方式1,最多能计65536个数,假设我们转入的初值为65534,那么定时器计两个数就会进入中断,这样会使程序紊乱而其他功能无法正常地执行,所以一般要留50-100个数的裕量。

2.2 定时器工作方式

在定时器工作方式的选择上,可以选择定时器的工作方式0、1、2都可以,本文采用的是工作方式1,即16位定时器,这样可以获得较宽的调频范围。

2.3 定时器初值的计算

设占空比为α,频率为f

产生高电平时装入定时器高8位的值应为

产生高电平时装入定时器低8位的值应为

显然,产生低电平时的公式只要把α换成(1-α)就行了。

然而在51单片机中,浮点数运算需要消耗cpu很长的时间,为了提高程序效率,通常用100倍的占空比来计算。同时,要注意数据类型,避免超出范围,影响计算结果。关于C51的乘除法问题,可以看以下这篇文章: http://blog.163.com/ssou_1985/blog/static/295320362010311102232210/

修改后的公式如下:
a为100倍占空比,fr为0.01倍频率
TH0 = (65535-a*100/fr)/256; //高位初值
TL0 = (65535-a*100/fr)%256;
同样,低电平的公式只需把a换成(100-a)即可。

2.4 例程

本例程采用定时器T0在工作方式1下产生一路PWM,用独立键盘控制频率、占空比的加减,频率可调范围100Hz-10kHz,占空比0-100%(均为理论值,实际值略低)
部分代码如下:

51单片机产生PWM方法

注:T0_H , T0_L , T1_H , T1_L 均用于暂时存储初值,进入中断服务程序后直接给寄存器TH0、TL0赋值,避免了在中断中计算。
51单片机产生PWM方法

注:flag为pwm输出标志,flag=1输出高电平,flag=0输出低电平

2.5 软件仿真结果

2.5.1 频率为100Hz

a.占空比约15%

51单片机产生PWM方法

b.占空比95%

51单片机产生PWM方法

2.5.2 频率为10KHz

a.占空比15%

51单片机产生PWM方法

b.占空比90%

51单片机产生PWM方法

转自: 玩转单片机

围观 16
154

一、基本知识

1.按键分类与输入原理

按键按照结构原理科分为两类,一类是触点式开关按键,如机械式开关、导电橡胶式开关灯;另一类是无触点式开关按键,如电气式按键,磁感应按键等。前者造价低,后者寿命长。目前,微机系统中最常见的是触点式开关按键。

在单片机应用系统中,除了复位按键有专门的复位电路及专一的复位功能外,其他按键都是以开关状态来设置控制功能或输入数据的。当所设置的功能键或数字键按下时,计算机应用系统应完成该按键所设定的功能,键信息输入时与软件结构密切相关的过程。

对于一组键或一个键盘,总有一个接口电路与CPU相连。CPU可以采用查询或中断方式了解有无将按键输入,并检查是哪一个按键按下,将该键号送人累加器,然后通过跳转指令转入执行该键的功能程序,执行完成后再返回主程序。

2.按键结构与特点

微机键盘通常使用机械触点式按键开关,其主要功能式把机械上的通断转换为电气上的逻辑关系。也就是说,它能提供标准的TTL逻辑电平,以便于通用数字系统的逻辑电平相容。机械式按键再按下或释放时,由于机械弹性作用的影响,通常伴随有一定的时间触点机械抖动,然后其触点才稳定下来。其抖动过程如下图1所示,抖动时间的长短与开关的机械特性有关,一般为5-10ms。在触点抖动期间检测按键的通与断,可能导致判断出错,即按键一次按下或释放错误的被认为是多次操作,这种情况是不允许出现的。为了克服你、按键触点机械抖动所致的检测误判,必须采取消抖措施。按键较少时,可采用硬件消抖;按键较多式,采用软件消抖。

51单片机之独立按键和矩阵键盘
图1 按键触点机械抖动

(1)按键编码

一组按键或键盘都要通过I/O口线查询按键的开关状态。根据键盘结构的不同,采用不同的编码。无论有无编码,以及采用什么编码,最后都要转换成为与累加器中数值相对应的键值,以实现按键功能程序的跳转。

(2)键盘程序

一个完整的键盘控制程序应具备以下功能:
a.检测有无按键按下,并采取硬件或软件措施消抖。
b.有可靠的逻辑处理办法。每次只处理一个按键,期间对任何按键的操作对系统不产生影响,且无论一次按键时间有多长,系统仅执行一次按键功能程序。
c.准确输出按键值(或键号),以满足跳转指令要求。

3.独立按键与矩阵键盘

(1)独立按键

单片机控制系统中,如果只需要几个功能键,此时,可采用独立式按键结构。

独立按键式直接用I/O口线构成的单个按键电路,其特点式每个按键单独占用一根I/O口线,每个按键的工作不会影响其他I/O口线的状态。独立按键的典型应用如图所示。独立式按键电路配置灵活,软件结构简单,但每个按键必须占用一个I/O口线,因此,在按键较多时,I/O口线浪费较大,不宜采用。独立按键如图2所示。

51单片机之独立按键和矩阵键盘
图2 独立键盘

独立按键的软件常采用查询式结构。先逐位查询没跟I/O口线的输入状态,如某一根I/O口线输入为低电平,则可确认该I/O口线所对应的按键已按下,然后,再转向该键的功能处理程序。

(2)矩阵键盘

单片机系统中,若使用按键较多时如电子密码锁、电话机键盘等一般都至少有12到16个按键,通常采用矩阵键盘。

矩阵键盘又称行列键盘,它是用四条I/O线作为行线,四条I/O线作为列线组成的键盘。在行线和列线的每个交叉点上设置一个按键。这样键盘上按键的个数就为4*4个。这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。

矩阵键盘的工作原理

最常见的键盘布局如图3所示。一般由16个按键组成,在单片机中正好可以用一个P口实现16个按键功能,这也是在单片机系统中最常用的形式,4*4矩阵键盘的内部电路如图4所示。

51单片机之独立按键和矩阵键盘
图3 矩阵键盘布局图

51单片机之独立按键和矩阵键盘
图4 矩阵键盘内部电路图

当无按键闭合时,P3.0~P3.3与P3.4~P3.7之间开路。当有键闭合时,与闭合键相连的两条I/O口线之间短路。判断有无按键按下的方法是:第一步,置列线P3.4~P3.7为输入状态,从行线P3.0~P3.3输出低电平,读入列线数据,若某一列线为低电平,则该列线上有键闭合。第二步,行线轮流输出低电平,从列线P3.4~P3.7读入数据,若有某一列为低电平,则对应行线上有键按下。综合一二两步的结果,可确定按键编号。但是键闭合一次只能进行一次键功能操作,因此须等到按键释放后,再进行键功能操作,否则按一次键,有可能会连续多次进行同样的键操作。

识别按键的方法很多其中,最常见的方法是扫描法

按键按下时,与此键相连的行线与列线导通,行线在无按键按下时处在高电平。如果所有的列线都处在高电平,则按键按下与否不会引起行线电平的变化,因此必须使所有列线处在电平。这样,当有按键按下时,改键所在的行电平才回由高变低。才能判断相应的行有键按下。

独立按键数量少,可根据实际需要灵活编码。矩阵键盘,按键的位置由行号和列号唯一确定,因此可以分别对行号和列号进行二进制编码,然后两值合成一个字节,高4位是行号,低4位是列号。

4.键盘的工作方式

对键盘的响应取决于键盘的工作方式,键盘的工作方式应根据实际应用系统中的CPU的工作状况而定,其选取的原则是既要保证CPU能及时响应按键操作,又不要过多占用CPU的工作时间。通常键盘的工作方式有三种,编程扫描、定时扫描和中断扫描。

(1)编程扫描方式

编程扫描方式是利用CPU完成其它工作的空余时间,调用键盘扫描子程序来响应键盘输入的要求。在执行键功能程序时,CPU不再响应键输入要求,直到CPU重新扫描键盘为止。

(2)定时扫描方式

定时扫描方式就是每隔一段时间对键盘扫描一次,它利用单片机内部的定时器产生一定时间(例如10ms)的定时,当定时时间到就产生定时器溢出中断。CPU响应中断后对键盘进行扫描,并在有按键按下时识别出该键,再执行该键的功能程序。

(3)中断扫描方式

上述两种键盘扫描方式,无论是否按键,CPU都要定时扫描键盘,而单片机应用系统工作时,并非经常需要键盘输入,因此,CPU经常处于空扫描状态。

为提高CPU工作效率,可采用中断扫描工作方式。其工作过程如下:当无按键按下时,CPU处理自己的工作,当有按键按下时,产生中断请求,CPU转去执行键盘扫描子程序,并识别键号。

来源: 玩转单片机

围观 10
170

在单片机的开发应用中,已逐渐开始引入高级语言,C语言就是其中的一种。用惯了汇编的人,总觉得高级语言“可控性”不好,不如汇编那样随心所欲。以下是笔者在C51编程中的几点经验,希望对初学C51者有所帮助。

一、C51热启动代码的编制

工业控制计算机,往往设有看门狗电路,看门狗动作,计算机复位,这就是热启动。热启动时,一般不允许程序从头开始,因为这将使测量或计算值复位,导致系 统工作异常。故程序必须判断是热启动还是冷启动。常用的方法是:设定某内存单位为标志位(如0x7f位和0x7e位),启动时首先读该内存单元的内容,如 果它等于一个特定的值(例如两个内存单元的都是0xaa),就认为是热启动,否则就是冷启动,程序执行初始化部分,并将0xaa赋予这两个内存单元。

根据以上的设计思路,编程时,设置一个指针,指向特定的内存单元如0x7f,然后在程序中根据特定内存单元的值判断冷/热启动,程序如下:

  void main()
  {  char data*HotPoint=(char*)0x7f;
  if((*HotPoint==0xaa)&&(*(--Hot
  Point)==0xaa))
  {     /*热启动的处理   */
  }
  else
  {  HotPoint=0x7e; /*冷启动的处理
  *HotPoint-0xaa;
  *(++HotPoint)=0xaa;
  }
  /*正常工作代码*/
  }

实际调试中发现,无论是热启动还是冷启动,开机后所有内存单元的值都被复位为0,实现不了热启动的要求。这是为什么呢?原来,用C语言编程时,开机时执 行的代码并非是从main()函数的第一语句开始的,在main()函数的第一语句执行前要先执行一段‘起始代码’。正是这段代码执行了内存清零的工作。 C编译程序提供了这段起始代码的源程序,名为CSTARTUP A51,打开这个文件,可以看到如下代码:

  IDATALEN EQU 8011 the length of IDATA memory m bytes
  STARTUP1:
  IF IDATALEN《》0
  MOV R0,#IDATALEN-I
  CLR A
  IDATALOOP:  MOV @R0,A
  DJNZ R0,IDATALOOP
  ENDIF

可见,在执行到判断是否热启动的代码之前,起始代码已将所有内存单元清零。如何解决这个问题呢?好在起始代码是可以更改的,方法是:修改 startup.a51源文件,然后用编译程序所附带的a51.exe程序对startup.a51编译,得到startup.obj文件,用这段代码代 替原来的起始代码。具体步骤是(设C源程序名为HOTSTART C):

  1 修改startup.a51源文件(这个文件在C51/LIB目录下)。
  2 执行如下命令:
  A51 startup.a51得到startup.obj文件。将此文件拷入HOTSTART C所在目录。
  3 将编好的C源程序用C51 EXE编译好,得到目标文件HOTSTART OBJ。
  4 用L51 HOTSTART,STARTUP OBJ命令连接,得到绝对目标文件HOTSTART。
  5 用OHS51 HOTSTART得到HOTSTART HEX文件,即可完成启动代码的修改。

对于startup.a51的修改,根据自己的需要进行,如将IDATALEN EQU 80H中的80H改为70H,就可以使6F到7F的16字节内存不被清零。

二、直接调用EPROM中已固化的程序

笔者用的仿真机,由6位数码管显示,在DE00H处存放显示子程序,只要将显示的数存入显示缓冲区,然后调用显示子程序就可以了,汇编指令为:

LCALL 0DE00H

在用C语言编程时,如何实现这一功能呢?C语言中有指向函数的指针这一概念,可以用来实现用函数指针调用函数。指向函数的指针变量的定义格式为:

类型标识符(*指针变量名)();

在定义好指针后就可以给指针变量赋值,使其指向某个函数的开始地址,然后用(*指针变量名)()即可调用这个函数。程序如下例:

  void main(void)
  {
  void (*DispBuffer)();/*定义指向函数指针*/
  DispBuffer=0xde00; /*赋值*/
  for(;;)
  { Key();
  DispBuffer();
  }
  }

三、将浮点数转化为字符数组

笔者在编制应用程序时有这样的要求:将运算的结果(浮点数)存入E2PROM中。我们知道,浮点数在C语言中是以IEEE格式存储的,一个浮点数占四个 字节。例如浮点数34 526存为160、26、10、664个数。要将该浮点数存入E2PROM,实际上就是要存这四个数。如何在程序中得到一个浮点数 的组成数呢?

浮点数在存储时,是存储在连续的字节中的,只要设法找到存储位置,就可以得到这些数了。可以定义一个void指针,将此指针指向需要存储的浮点数,然后再将此指针强制转化为char型。这样,利用指针就可以得到组成该浮点数的各个字节的值了。具体程序如下:

  #define uchar unsigned char
  #define uint unsigned int
  void FtoC(void)
  {  float a;
  uchar I,*px
  uchar x[4];/*定义字符数组,准备存储浮点数的四个字节*/
  void *pf;
  px=x; /*px指针指向数组x*/
  pf=&a;/*void型指针指向浮点数首地址*/
  a=34.526;
  for(I=0;I《4;I++)
  { *(px+I)=*((char *)pf+I);/*强制void型指针转成char型,因为void型指针不能运算*/
  }
  }

如果已将数存入E2PROM,要将其取出合并,方法也是一样,可参考下面的程序。

  #define uchar unsigned char
  #define uint unsigned int
  void CtoF(void)
  {  float a;
  uchar I,*px
  uchar x[4]-{56,180,150,73};
  void *pf;
  px=x;
  pf=&a;
  for(I=o;I《4;I++)
  { *((char *)pf+I)=*(px+I)
  }
  }

以上程序所用C语言为FRANKLIN C51 VER 3 2。

来源: 电子发烧友

围观 6
118

串口通信的基本认识

通信分为并行通信和串行通信,并行通信时的数据各个位同时传送,可以实现字节为单位通信,但通信线多占用资源,成本高。以前用到的的P1=0x55,一次给P1口的8个管脚分别赋值,同时进行信号输出,类似于8个车道可以过去8辆车,这样的形式是并行的,一般称P0,P1,P2,P3为51单片机的4组并行总线。

串行通信,就是一个车道,一个只能通过一辆车,如果一个0x55这样一个字节的数据要传输过去的话,假如低位在前,高位在后的话,那发送方式是:0-1-0-1-0-1-0-1,一位一位的进行传输,要发送8次才能发送完一个字节
STC89C52有两个引脚是专门用来做串口通信的,一个是P3.0(RXD),一个是P3.1(TXD),他们组成的通信接口就是串行接口,简称串口。用于两个单片机进行UART通信。两单片机通信接口连接方式:RXD——TXD,TXD——RXD。

单片机1的TXD发送通道接到单片机2的RXD接收通道,单片机的1的RXD接收通道接到单片机2的TXD发送通道,从而实现相互通信。

当单片机1想给单片机2发送数据,比如发送了0xCE,用二进制表示就是11001110,在串口通信过程中,是低位先发,高位后发的原则,那么就是让TXD首先拉低电平,持续一段时间,发送一位0,然后拉高电平,持续一段时间,发送一位1,继续拉高,在持续一段时间,发送一位1,一直把8位二进制数11001110全部发送完毕,这里涉及到一个问题,就是持续的一个时间段时间“到底是多少”。因而便引入通信中非常重要的一个概念波特率,也叫做比特率。

波特率

波特率就是发送二进制数据位的速率,习惯用baud表示,即我们发送一位二进制数据持续的时间=1/baud。在通信之前,单片机1和单片机2首先都要明确约定好他们之间的通信波特率,必须保持一致,收发双方才能正常通信。
约定好速度之后,我们还要考虑第二个问题,数据什么时候是起始,什么时候是结束?提前和延迟结束都会接收错误。在uart通信的时候,一个字节是8位,规定当没有通信信号发生时,通信线路保持高电平,当数据发送前,先发一位0表示起始位,然后发送8位数据位,数据位是先低再高,数位位发送完后才呢个后再发送一位1表示停止位,这样我们要发送的8位数据,实际上我们发送了10位,多出来两位其中一个是起始位,一个是停止位。而接受方一直保持的高电平,一旦检测到一位低电平,准备开始接受数据,接受8位数据后,然后检测停止位,再准备下一个数据接收。

串口数据发送示意图,实际上是一个时域示意图,就是信号随着时间变化的对应关系。比如在单片机的发送引脚上,左边的是先发生的,右边的是后发生的,数据位的切换时间就是波特率分之一秒,如果能够理解时域的概念,后边很多通信的时序图就很容易理解了。

RS232

在我们电脑上,一般都会有一个9针的串行接口,这个串行接口叫做RS232接口,它和UART通信有关联,但是由于现在笔记本电脑不带9针串口,所以和单片机通信越来越趋于使用USB虚拟串口。

九针串口分工头和母头

公头上5下4,上5从左到右为1.2.3.4.5;下4从左到右为6.7.8.9;
母头上5下4,上5从左到右为5.4.3.2.1;下4从左到右为9.8.7.6;

RS232接口一共有9个引脚,分别定义是:
1、载波检测DCD;
2、接收数据RXD;
3、发送数据TXD;
4、数据终端准备好DTR;
5、信号地线SG;
6、数据准备好DSR;
7、请求发送RTS;
8、清除发送CTS;
9、振铃提示RI。
我们要让这个串口和我们单片机进行通信,我们只需要关心其中的2脚RXD、3脚TXD和5脚GND即可。

虽然这三个引脚的名字和我们单片机上的串口名字一样,但是却不能直接和单片机对连通信,这是为什么呢?随着我们了解的内容越来越多,我们得慢慢知道,不是所有的电路都是5V代表高电平而0V代表低电平的。对于RS232标准来说,它是个反逻辑,也叫做负逻辑。为何叫负逻辑?它的TXD和RXD的电压,-3V~-15V电压代表是1,+3~+15V电压代表是0。低电平代表的是1,而高电平代表的是0,所以称之为负逻辑。因此电脑的9针RS232串口是不能和单片机直接连接的,需要用一个电平转换芯片MAX232来完成。

这个芯片就可以实现把标准RS232串口电平转换成我们单片机能够识别和承受的UART 0V/5V电平。从这里大家似乎慢慢有点明白了,其实RS232串口和UART串口,它们的协议类型是一样的,只是电平标准不同而已,而MAX232这个芯片起到的就是中间人的作用,它把UART电平转换成RS232电平,也把RS232电平转换成UART电平,从而实现标准RS232接口和单片机UART之间的通信连接。

USB转串口通信

随着技术的发展,工业上还有RS232串口通信的大量使用,但是商业技术的应用上,已经慢慢的使用USB转UART技术取代了RS232串口,绝大多数笔记本电脑已经没有串口这个东西了,那我们要实现单片机和电脑之间的通信该怎么办呢?

我们只需要在电路上添加一个USB转串口芯片,就可以成功实现USB通信协议和标准UART串行通信协议的转换,在我们的开发板上,我们使用的是CH340T这个芯片。

我们需要用跳线帽把中间和下边的针短接在一起。右侧的CH340T这个电路很简单,把电源、晶振接好后,6脚和7脚的DP和DM分别接USB口的2个数据引脚上去,3脚和4脚通过跳线接到了我们单片机的TXD和RXD上去。

CH340T的电路里3脚位置加了个4148的二极管,是一个小技巧。因为STC89C52这个单片机下载程序时需要冷启动,就是先点下载后上电,上电瞬间单片机会先检测需要不需要下载程序。虽然单片机的VCC是由开关来控制,但是由于CH340T的3脚是输出引脚,如果没有此二极管,开关后级单片机在断电的情况下,CH340T的3脚和单片机的P3.0(即RXD)引脚连在一起,有电流会通过这个引脚流入后级电路并且给后级的电容充电,造成后级有一定幅度的电压,这个电压值虽然只有两三伏左右,但是可能会影响到正常的冷启动。加了二极管后,一方面不影响通信,另外一个方面还可以消除这种不良影响。这个地方可以暂时作为了解,大家如果自己做这类电路,可以参考一下。

IO口模拟UART串口通信

UART串口波特率,常用的值是300、600、1200、2400、4800、9600、14400、19200、28800、38400、57600、115200等速率。IO口模拟UART串行通信程序是一个简单的演示程序,我们使用串口调试助手下发一个数据,数据加1后,再自动返回。

串口调试助手,这里我们直接使用STC-ISP软件自带的串口调试助手,先把串口调试助手的使用给大家说一下,如图11-6所示。第一步要选择串口助手菜单,第二步选择十六进制显示,第三步选择十六进制发送,第四步选择COM口,这个COM口要和自己电脑设备管理器里的那个COM口一致,波特率按我们程序设定好的选择,我们程序中让一个数据位持续时间是1/9600秒,那这个地方选择波特率就是选9600,校验位选N,数据位8,停止位1。

串口调试助手的实质就是利用电脑上的UART通信接口,发送数据给我们的单片机,也可以把我们的单片机发送的数据接收到这个调试助手界面上。

因为初次接触通信方面的技术,所以我把后面的IO模拟串口通信程序进行一下解释,大家可以边看我的解释边看程序,把底层原理先彻底弄懂。

变量定义部分就不用说了,直接看main主函数。首先是对通信的波特率的设定,在这里我们配置的波特率是9600,那么串口调试助手也得是9600。配置波特率的时候,我们用的是定时器T0的模式2。模式2中,不再是TH0代表高8位,TL0代表低8位了,而只有TL0在进行计数,当TL0溢出后,不仅仅会让TF0变1,而且还会将TH0中的内容重新自动装到TL0中。这样有一个好处,就是我们可以把想要的定时器初值提前存在TH0中,当TL0溢出后,TH0自动把初值就重新送入TL0了,全自动的,不需要程序中再给TL0重新赋值了,配置方式很简单,大家可以自己看下程序并且计算一下初值。

波特率设置好以后,打开中断,然后等待接收串口调试助手下发的数据。接收数据的时候,首先要进行低电平检测while (PIN_RXD),若没有低电平则说明没有数据,一旦检测到低电平,就进入启动接收函数StartRXD()。接收函数最开始启动半个波特率周期,初学可能这里不是很明白。大家回头看一下我们的图11-2里边的串口数据示意图,如果在数据位电平变化的时候去读取,因为时序上的误差以及信号稳定性的问题很容易读错数据,所以我们希望在信号最稳定的时候去读数据。除了信号变化的那个沿的位置外,其它位置都很稳定,那么我们现在就约定在信号中间位置去读取电平状态,这样能够保证我们读的一定是正确的。

一旦读到了起始信号,我们就把当前状态设定成接收状态,并且打开定时器中断,第一次是半个周期进入中断后,对起始位进行二次判断一下,确认一下起始位是低电平,而不是一个干扰信号。以后每经过1/9600秒进入一次中断,并且把这个引脚的状态读到RxdBuf里边。等待接收完毕之后,我们再把这个RxdBuf加1,再通过TXD引脚发送出去,同样需要先发一位起始位,然后发8个数据位,再发结束位,发送完毕后,程序运行到while (PIN_RXD),等待第二轮信号接收的开始。

串口通信基本应用

通信的三种基本类型

常见的通信传输方式可以分为单工通信、半双工通信、全双工通信。

单工通信就是只允许一个方向向另外一个方向传送信息,而另外一方不能回传消息。比如:电视遥控器、收音基等

半双工通信是指数据可以在双方之间相互传播,但是同一时刻只能呢个其中一方发给另一方,比如:对讲机

全双工通信是指发送数据同时也能接收数据,两者同步进行,就如同我们的电话一样,我们说的同时也可以听到对方的声音。

uart模块介绍

IO口模拟串口通信,让大家了解了串口通信的本质,但是我们的单片机程序却需要不停的检测扫描单片机IO口收到的数据,大量占用了单片机的运行时间。这时候就会有聪明人想了,其实我们并不是很关心通信的过程,我们只需要一个通信的结果,最终得到接收到的数据就行了。这样我们可以在单片机内部做一个硬件模块,让它自动接收数据,接收完了,通知我们一下就可以了,我们的51单片机内部就存在这样一个UART模块,要正确使用它,当然还得先把对应的特殊功能寄存器配置好。

51单片机的UART串口的结构由串行口控制寄存器SCON、发送和接收电路三部分构成,先来了解一下串口控制寄存器SCON。

SCON串行控制器的位分配(地址:0x98)

位:符号:复位值: 0:RI:0;1:TI:0;2:RB8:0;3:TB8:0;4:REN:0;5:SM2:0;6:SM1:0;7:SM0:0;
0位RI:接收中断标志位,当接收电路接收到停止位的中间位置时,RI由硬件置1,必须通过软件清零
1位TI:发送中断标志位,当发送电路发送到停止位的中间位置时,TI由硬件置1,必须通过软件清零。
2位RB8:模式2和3中接收到的第9位数据(很少用),模式1用来接收停止位。
3位TB8:模式2和3中要发送的第9位数据(很少用)。
4位REN:使能串行接收。由软件置位使能接收,软件清零则禁止接收。
5位SM2:多机通信控制位(极少用),模式1直接清零。
6位SM1和7位SM0:

这两位共同决定了串口通信的模式0~模式3共4种模式。我们最常用的就是模式1,也就是SM0=0,SM1=1,下边我们重点就讲模式1,其它模式从略。

对于串口的四种模式,模式1是最常用的,就是我们前边提到的1位起始位,8位数据位和1位停止位。下面我们就详细介绍模式1的工作细节和使用方法,至于其它3种模式与此也是大同小异,真正遇到需要使用的时候大家再去查阅相关资料就行了。

在我们使用IO口模拟串口通信的时候,串口的波特率是使用定时器T0的中断体现出来的。在硬件串口模块中,有一个专门的波特率发生器用来控制发送和接收数据的速度。对于STC89C52单片机来讲,这个波特率发生器只能由定时器T1或定时器T2产生,而不能由定时器T0产生,这和我们模拟的通信是完全不同的概念。

如果用定时器2,需要配置额外的寄存器,默认是使用定时器1的,我们本章内容主要就使用定时器T1作为波特率发生器来讲解,方式1下的波特率发生器必须使用定时器T1的模式2,也就是自动重装载模式,定时器的重载值计算公式为:
TH1 = TL1 = 256 - 晶振值/12 /2/16 /波特率
和波特率有关的还有一个寄存器,是一个电源管理寄存器PCON,他的最高位可以把波特率提高一倍,也就是如果写PCON |= 0x80以后,计算公式就成了:
TH1 = TL1 = 256 - 晶振值/12 /16 /波特率
公式中数字的含义这里解释一下,256是8位定时器的溢出值,也就是TL1的溢出值,晶振值在我们的开发板上就是11059200,12是说1个机器周期等于12个时钟周期,值得关注的是这个16,我们来重点说明。在IO口模拟串口通信接收数据的时候,采集的是这一位数据的中间位置,而实际上串口模块比我们模拟的要复杂和精确一些。他采取的方式是把一位信号采集16次,其中第7、8、9次取出来,这三次中其中两次如果是高电平,那么就认定这一位数据是1,如果两次是低电平,那么就认定这一位是0,这样一旦受到意外干扰读错一次数据,也依然可以保证最终数据的正确性。

串口通信的发送和接收电路在物理上有2个名字相同的SBUF寄存器,它们的地址也都是0x99,但是一个用来做发送缓冲,一个用来做接收缓冲。意思就是说,有2个房间,两个房间的门牌号是一样的,其中一个只出人不进人,另外一个只进人不出人,这样的话,我们就可以实现UART的全双工通信,相互之间不会产生干扰。但是在逻辑上呢,我们每次只操作SBUF,单片机会自动根据对它执行的是“读”还是“写”操作来选择是接收SBUF还是发送SBUF,后边通过程序,我们就会彻底了解这个问题。

##UART串口程序

一般情况下,我们编写串口通信程序的基本步骤如下所示:
1、配置串口为模式1。
2、配置定时器T1为模式2,即自动重装模式。
3、根据波特率计算TH1和TL1的初值,如果有需要可以使用PCON进行波特率加倍。
4、打开定时器控制寄存器TR1,让定时器跑起来。

这里还要特别注意一下,就是在使用T1做波特率发生器的时候,千万不要再使能T1的中断了。

我们先来看一下由IO口模拟串口通信直接改为使用硬件UART模块时的程序代码,看看程序是不是简单了很多,因为大部分的工作硬件模块都替我们做了。程序功能和IO口模拟的是完全一样的。

通信实例与ASCLL码

先抛开我们使用的汉字不谈,那么我们常用的字符就包含了0~9的数字、A~Z/a~z的字母、还有各种标点符号等。那么在单片机系统里面我们怎么来表示它们呢?ASCII码(American Standard Code for Information Interchange,即美国信息互换标准代码)可以完成这个使命:我们知道,在单片机中一个字节的数据可以有0~255共256个值,我们取其中的0~127共128个值赋予了它另外一层涵义

我们用字符格式发送一个小写的a,返回一个十六进制的0x61,数码管上显示的也是61,ASCII码表里字符a对应十进制是97,等于十六进制的0x61;我们再用字符格式发送一个数字1,返回一个十六进制的0x31,数码管上显示的也是31,ASCII表里字符1对应的十进制是49,等于十六进制的0x31。这下大家就该清楚了:所谓的十六进制发送和十六进制接收,都是按字节数据的真实值进行的;而字符格式发送和字符格式接收,是按ASCII码表中字符形式进行的,但它实际上最终传输的还是一个字节数据。这个表格,当然不需要大家去记住,理解它,用的时候过来查就行了。

转自: 单片机精讲吴鉴鹰

围观 27
273

页面

订阅 RSS - 51单片机