电源模块

1、什么是漏感

漏感是电机初次级在耦合的过程中漏掉的那一部份磁通。

变压器的漏感应该是线圈所产生的磁力线不能都通过次级线圈,因此产生漏磁的电感称为漏感。

漏感在哪?虽然印制电路板上的印制导线以及变压器的引线端也是漏感的一部分,但大部分漏感在变压器原边侧绕组中,尤其是那些与副边侧绕组有耦合关系的原边侧绕组中。

漏感是因为变压器一组线圈到另一组磁通量不完全耦合而产生的电感分量。任何初级线圈到次级线圈磁通量没有耦合的部分会表现出一个与初级串联的感性阻抗,因此在原理图中,漏感表示为在理想变压器初级线圈前端一个而外的电感。

在特定应用中,如开关电源和照明整流器,变压器的漏感在产品设计中会产生重要的功能影响。因此,准确的漏感测量对于变压器制造商来说通常是一项重要的步骤。

理想变压器

理论上的理想变压器没有损耗。电压比直接为匝数比,电流比为匝数比的倒数(图1)。

实际变压器

在实际的变压器中,初级线圈的某些磁通量不会耦合到次级线圈。这些“漏掉”的磁通量不会参与变压器的工作,可以表示为额外的与线圈串联的感性阻抗(图 2)。

实际的变压器加入空气间隙

在某些变压器的设计中,漏感必须要在总的电感量占更大的比例,并设定一个小的误差。漏感量比例的增加通常通过在磁芯中引入空气间隙来实现,因而降低磁芯的磁导率以及初级线圈的电感。因此初级线圈与次级线圈磁通量不耦合部分所占的比例也会增加(图 3)。

那么气隙是否跟漏感有线性关系?

下面以一个例子来说明变压器漏感与气隙大小的3种关系:不变、变大、变小。
见下图,假设气隙1、2、3使得磁阻R1=R2=R3,忽略窗口的那少部分磁通,可知
Φ=Φ1+Φ2。

存在下面3种情况:
1、增加气隙1,R1>R3,使得Φ1>Φ2,即耦合到Ns的磁通更多,漏感减小。
2、增加气隙2,R1=R3还是成立,Φ1=Φ2,即耦合到Ns的磁通不变,漏感不变。
3、增加气隙3,R1<R3,Φ1<Φ2,即耦合到Ns的磁通减少,漏感增大。
变压器漏感与气隙大小的关系,不能简单说增大、减小或者不变,得根据具体的绕组结构,磁芯结构来分析。

决定漏感大小的因素

对于固定的已经制作好的变压器,漏感与以下几个因素有关:

K:绕组系数,正比于漏感,对于简单的一次绕组和二次绕组,取3,如果二次绕组与一次绕组交错绕制,那么,取0.85,这就是为什么推荐三明治绕制方法的原因,漏感下降很多很多,大概到原来的1/3还不到。

Lmt:整根绕线绕在骨架上平均每匝的长度。所以,变压器设计者喜欢选择磁心中柱长的磁心。绕组越宽,漏感就越减小。把绕组的匝数控制在最少的程度,对减小漏感非常有好处。匝数对漏感的影响是二次方的关系。

Nx:绕组的匝数。

W:绕组宽度,刚才已经说过了。大家可以拿一个很普通的BOBIN来分析一下。

Tins:绕线绝缘厚度。

bW:制作好的变压器所有绕组的厚度。

2、漏感的危害与防护

漏感是指没有耦合到磁心或者其他绕组的可测量的电感量.它就像一个独立的电感串入在电路中.它导致开关管关断的时候DS之间出现尖峰.因为它的磁通无法被二次侧绕组匝链。

漏感可看作与变压器原边侧电感串联的寄生电感。所以,在开关管关断瞬间,这两个电感中的电流都是Ipkp,即原边侧峰值电流。

但是,在开关管关断时,原边侧电感能量可以通过互感转移到副边(通过输出二极管)释放,但漏感能量无处可去。

因此,它会以巨大的电压尖峰形式来“发泄怨气"。见图。

如果不尽力吸收这些漏感能量,尖峰会很高,将造成开关管损坏既然这些能量肯定不能传输到副边侧,那就只有两种选择:要么设法回馈至输人电容,要么设法消耗掉(损耗)。简单起见,通常选择后者。一般可直接采用稳压管钳位方法,如图所示。

当然,稳压管电压必须根据开关管所能承受的最大电压来选择注意,出于一些原因(特别是效率),最好把稳压管与阻塞二极管串联后,并联在原边侧绕组上,如图所示。

另外一种方法是,运用电容并联电阻的方式实现RCD;在大部分低功率应用场合都会采用简单易实现的RCD钳位电路来减缓电压尖峰。

因此RCD钳位电路以其简洁易实现多用于小功率场合。图 1和图 2分别为反激电路中的RCD钳位电路和电容C两端的电压波形。

图 1反激中的RCD钳位电路

图 2电容两端波形

引入RCD钳位电路,目的是消耗漏感能量,但不能消耗主励磁电感能量,否则会降低电路效率,因此在电路设计调试过程中要选择恰当的R及C的值,以使其刚好消耗掉漏感能量。下面将分析其工作原理。

当开关管Q关断时,变压器初级线圈电压反向,同时漏感LK释放能量直接对C进行充电,电容C电压迅速上升,二极管D截止后C通过R进行放电

若C值较大,C上电压缓慢上升,副边反激过冲小,变压器能量不能迅速传递到副边;若C值特别大,电压峰值小于副边反射电压,则钳位电容上电压将一直保持在副边反射电压附近,即钳位电阻变为负载,一直在消耗磁芯能量,此时电容两端波形如图 (a)所示。

电容两端波形

若RC过小,则电容C充电较快,且C将通过电阻R很快放电,整个过程中漏感能量消耗很快,在Q开通前钳位电阻则成为变压器的负载,消耗变压器存储的能量,降低效率,电容C两端波形如图 (b)所示。

若RC值取值比较合适,到开关管Q再次开通时,电容C上电压刚好放到接近于变压器副边反射的电压,此时钳位效果较好,电容C两端波形如图 (c)所示。

转自:电源研发精英圈

围观 8
25

一摸电源模块的表面,热乎乎的,模块坏了?且慢,有一点发热,仅仅只是因为它正努力地工作着。但高温对电源模块的可靠性影响极其大!基于电源模块热设计的知识,这一次,我们扒一扒引起电源模块发热的原因。

电源模块在电压转换过程中有能量损耗,产生热能导致模块发热,降低电源的转换效率,影响电源模块正常工作,并且可能会影响周围其他器件的性能,这种情况需要马上排查。但什么情况下会造成电源模块发热严重呢?具体原因如下所示:

一、使用的是线性电源

线性电源工作原理如下图1,通过调节调整管RW改变输出电压的大小。由于调整管相当于一个电阻,电流经过电阻时会发热,导致效率不高。

带你了解引起电源模块发热的四大原因
图1 线性电源原理图

为了防止电源模块发热严重,可采取以下措施:加大散热片、实行风冷、导热材料解决(导热硅脂、导热灌封胶)、改用开关电源。

二、负载太小

电源轻载,即电源电路负载阻抗比较大,这时电源对负载的输出电流比较小。有些电源电路中不允许电源的轻载,否则会使电源电路输出的直流工作电压升高很多,造成对电源电路的损坏。一般电源模块有最小的负载限制,各厂家有所不同,普遍为10%左右。

如果输出负载太轻,建议在输出端并联一个假负载电阻,如图2所示。该假负载电阻功率加上实际负载功率之和> 10%负载。

带你了解引起电源模块发热的四大原因
图2 负载太小,并联假负载

三、负载过流

电源过载,与电源轻载情况恰好相反,就是电源电路的负载电路存在短路,使电源电路输出很大的电流,且超出了电源所能承受的范围。

对于无过流保护的电源模块,输出需要稳压、过压及过流保护的最简单方法就是在输入端外接一带过流保护的线性稳压器,如图3所示。

带你了解引起电源模块发热的四大原因
图3 负载过流,增加线性稳压器

四、环境温度过高或散热不良

使用模块电源前,务必考虑电源模块的温度等级和实际需要的工作温度范围。根据负载功率和实际的环境温度进行降额设计。

转自: ZLG致远电子

围观 20
63

导读:随着嵌入式行业的快速发展,在各种行业应用中电源要求也越来越高,为保证系统的稳定性,隔离电源应运而生。但隔离电源中关键指标——隔离电压指的是什么?与爬电距离有什么关系?本文将从隔离电源的原理为你揭晓。

微电子行业的高速发展,产品使用场合的电磁环境也越来越复杂,产品的稳定性也受到很大的影响。嵌入式产品的生产公司对产品加入各种隔离器件或隔离电路来减少工作现场的干扰,增强设备稳定性。

电源作为嵌入式设备能源供给部分,是产品稳定工作的前提。电源的隔离尤为重要,电源隔离模块的应用也成为嵌入式设备设计的必备品。

在工业设备中,要求两个设备之间的电源隔离,采用带变压器的直流变换器,将两个电源之间隔开,使他们相互独立,从而减少外界干扰!

隔离电源的隔离耐压和爬电距离介绍

1. 隔离电源的隔离耐压介绍

电源模块中“隔离电压3000VDC”是什么?有什么用?
图1 隔离电源内部框图

如图1所示,隔离DC-DC电源模块内部框图。

隔离耐压指的是两个没有直接电气连接的系统所能承受的最高绝缘电压。

电源隔离使用场合不同,对应的参数选择也不用。如:AD-DC电源隔离,一般的工业场合要求隔离耐压在3000VAC到4000VAC;DC-DC电源隔离一般工业场合要求1000VDC到2000VDC,特殊行业可能会高,医疗行业有要求6000VDC。

首先区别一下各项电压指标的单位,常见的又ADC、VAC和RMS,具体如下所示。

VAC/VDC分别指交流电压与直流电压,但隔离耐压中交流与直流不能简单的进行换算,例如,3000VAC的幅值电压有4242V,但在实际应用中隔离耐压3000VAC与4242VDC并不等效。

具体原因包括两点:

1、对于隔离模块,输入输出之间是存在隔离电容,对于直流信号,电容的阻抗无限大,因此隔离电容的大小对于直流信号没有太大的影响,而对于交流信号就会有较大的影响,表现在漏电流会变大,或者直接超标,系统报警。

2、AC与DC的另一个区别在于频率会影响绝缘介质的介电常数,频率会导致绝缘介质的介电常数降低,通常介电常数越高,绝缘能力越强。

RMS是指真有效值,简单而言即代表交流电相当于直流电在单位时间内所做的功。也就是真有效值为10V的交流电与10V的直流电对相同的负载在相同的时间下所做的功相同。该单位通常不作为隔离耐压的计量单位。

2. 隔离电源爬电距离介绍

如何保证隔离耐压的稳定性和安全性,保证隔离电源模块不被击穿,我们就要计算爬电距离。两个导电部件之间,或一个导电部件与设备及易接触表面之间沿绝缘材料表面测量的最短空间距离沿绝缘表面放电的距离即泄漏距离也称爬电距离,爬电距里=表面距离/系统最高电压,根据污秽程度不同。

电源模块中“隔离电压3000VDC”是什么?有什么用?
图2 爬电距离示意图

在IEC60950、GB4943-2011标准中,规定了不同电压等级需要的最小安全距离,而安全距离又包括电气间距和爬电距离两种。对于开关电源主要需要保证最小安全距离的地方有以下两个方面:
1、一次侧电路对外壳(保护地)的安全距离;
2、一次侧电路对二次侧电路之间的安全距离。

隔离电源相较于非隔离电源的优劣势如下图3所示。

电源模块中“隔离电压3000VDC”是什么?有什么用?
图3 隔离电源与非隔离电源对比

隔离电源的应用

嵌入式产品的应用场合各种干扰都会对产品的稳定性带来威胁,在产品设计阶段,选择好的隔离电源模块和隔离通信模块,能有效的屏蔽使用环境带来的干扰,对产品的稳定工作带来保障。

我们经常会在媒体上看见一些手机充电爆炸,手机充电时触电的新闻报道。隔离电源模块能够很好的保证产品的稳定工作,更重要的是保护使用者的生命和财产安全。

隔离电源目前使用有两种方式,器件分立搭建与采用DC-DC电源模块,对比如下所示。

1. 方案选择

在产品性能需求稍微明了之后,那接下来就是开始设计开发了,首先要做的就是电路方案的选取了,下面为大家列举一些比较常见的“反面教材”。

比如设计开发一个市电交流输入转直流输出的,很多人的第一时间就想到采用工频变换电路方案,因为此方案比较简单,一个工频变压器,再加上个整流滤波就可以搞定,如下图4所示。使用此方案的产品的效率非常低,并且产品的体积会非常之大,在应用中还伴随着让人非常闹心的工频涡流声。而模块方案选用合适的变压器,并且多重工序层层保证变压器的产品一致性,保证产品最终性能。

电源模块中“隔离电压3000VDC”是什么?有什么用?
图4 变压器方案对比

2. 物料选型及PCB设计

电路方案确定之后,接下来就需要进行产品性能参数的设计,要对电路方案中的电子元器件进行参数设计、计算与结构物料选型,在这个环节必须从多方面进行权衡。

1、物料的选型。在专业的模块电源厂商就可以做到兼得,会根据产品的不同规格需求,不同的应用条件,舍掉无需的物料规格,选择最优的所需物料规格。

2、电源模块的PCB的设计。因为模块电源产品有模块电源的PCB设计规范要求,它要考虑散热设计、EMC设计、干扰设计和生产工艺设计等等,涉及的内容非产多,所以PCB设计在模块电源产品开发过程中是作为最重要的环节之一来对待的,如图5所示。

电源模块中“隔离电压3000VDC”是什么?有什么用?
图5 PCB设计要求

转自:ZLG致远电子

围观 7
470

简单的引脚可配置数字模块为高性能的FPGA、DSP、ASIC和存储器提供了最高的功率密度和效率

全球领先的半导体解决方案供应商瑞萨电子株式会社(TSE:6723)今日宣布,推出新型全塑封型数字 DC/DC PMBus™ 电源模块系列。五款RAA210xxx 简单数字电源模块提供了先进的数字通讯和监测功能,与瑞萨电子的模拟电源模块一样简单易用。这些产品是完全的降压稳压电源,可提供 25A、33A、双 25A、50A 和 70A 的输出电流,同时可在业界标准的 12V 或 5V 输入电源下运行。RAA210xxx 系列为服务器、存储、光网络和电信设备中使用的高性能 FPGA、DSP、ASIC 和存储器提供负载侧 ( POL ) 直接供电。每个模块器件都采用了散热最优化的高密度集成 ( HDA ) 封装,并高度集成了 PWM 控制器、MOSFET、电感器和无源器件。简化的模块应用只需配备输入和输出大容量电容器即可完成完整电源设计。

RAA210xxx 是一个成本更优化、应用更简单的数字电源模块系列,与瑞萨电子全功能数字 ISL827xM 系列的引脚兼容。RAA210xxx 简单数字电源模块提供运行时的数字可编程功能,可通过 PMBus 系列命令进行配置更改,并支持完整的数字通讯和系统监控。如果在使用中需要更高性能的数字控制功能,用户可以升级到引脚兼容的 ISL827xM 模块,轻松实现完全数字控制功能,包括多个模块并联的电流共享,通过 PowerNavigator™ 工具访问设置所有 PMBus 命令,以及针对客户专门应用进行完全功能设置并存储在模块非易失性内存内。

瑞萨电子工业模拟和电源业务部副总裁 Philip Chesley 表示:“ 我们的简单数字电源模块可加快设计团队将产品推向市场的速度,因为这些团队需要更易于使用、成本更低的数字电源解决方案。 RAA210xxx 简单数字电源产品延续了瑞萨电子在功率密度、高效率和快速瞬态性能方面的领先地位,可满足苛刻的多路输出 POL 要求。”

RAA210xxx 系列专有的 HDA 封装通过单层导电封装基板有效地将热量从模块传输到系统板卡,并在不需要风扇或散热器的情况下进行散热,从而提供出色的全负载电气和热性能。HDA 的高功率密度封装完全解决了系统板卡空间受限的问题,这是分立器件方案无法实现的。RAA210xxx 简单数字电源模块采用瑞萨电子专利保护的 ChargeMode™ 控制架构,可实现高达 96% 的峰值效率,而在大多数情况下的效率都高于 90% 。先进的控制结构利用了单时钟周期矫正技术实现了电流负载变化下的快速瞬态响应,从而降低电容并节省成本和系统板卡空间。

RAA210xxx 简单数字电源模块的关键特性

  •  25A - 70A 的输出电流
  •  宽输入电压范围:4.5V - 14V
  •  可编程输出电压范围:0.6V - 5V
  •  在不同输入、负载和温度范围内实现 ± 1.2% 的输出电压精度
  •  ChargeMode 控制环路结构
  •  296kHz - 1.06MHz 的可选择开关频率选项
  •  无论温度、震动或老化引起的输出电容变化,简单无需补偿的设计都能保证模块的稳定运行
  •  完成输入和输出欠压 ( UV )、过压 ( OV )、输出电流和温度保护并可进行故障记录

电源设计人员可将 RAA210xxx 简单数字电源模块与 3A ISL8203M、5A ISL8205M 和15A ISL8215M 模拟电源模块以及瑞萨电子低压差稳压器 ( LDO ) 结合,以支持嵌入式应用中的辅助电源设计。

电源设计工具

PowerCompass™工具可帮助用户快速识别符合其特定要求的合适电源模块和其他部件。 可为超过 200 个 FPGA 设置多个电源配置,这样,设计人员能够在几分钟内执行高级系统分析,并生成定制参考设计文件。PowerNavigator TM工具允许设计人员对简单的数字电源模块进行排序、通讯和实时配置。

定价和上市

RAA210xxx 简单数字电源模块和评估板现在都可以从瑞萨电子的全球分销商处购买。1000 件批量时,产品单价从25 安培 RAA210825 模块的18.38 美元至 70 安培 RAA210870 模块的 51.75 美元。欲了解详情,请访问:www.renesas.com/simple-digital-power-modules

瑞萨电子发布全塑封简单数字电源模块
围观 3
601

一、浪涌电压来源

1、雷击引起的浪涌,当发生雷击时,通讯电路会产生感应,形成浪涌电压或电流;
2、系统应用中负载的切换及短路故障也会引起浪涌;
3、其他设备频繁开关机引起的高频浪涌电压。

据某些权威机构报道,一年之中发生的浪涌电压超过应用电压一倍以上的次数就高达800余次,电压超1000V以上的就有300余次,这是一个相当大的数据,平均每天就有两次,所以浪涌防护电路是必不可少的。

电源模块浪涌防护电路该如何设计?
图1

二、电源为何需要浪涌防护电路

电源模块是系统与外部接触、接口的,外部传来的浪涌都经过电源模块,所以需要浪涌防护电路。

由于电源模块体积小,集成度高,内部的控制芯片和晶体管等器件最大耐压和最大电流都比较极限,一个浪涌电压过来可能就使模块损坏失效,导致整个系统的瘫痪,即使没有立马损坏,器件受到应力冲击,也会影响寿命和可靠性,所以为了保证电源模块持续可靠的应用,一般都需要加上浪涌防护电路。电源模块受限于体积小,很多模块内部不能加上防浪涌电路,所以需要在模块的外部加上防浪涌电路。

三、浪涌测试标准

电源模块的浪涌测试标准是参照IEC61000-4-5。该标准适用于电气和电子设备在规定的工作状态下工作时,对由开关或雷电作用所产生的有一定危害电平的浪涌电压的反应。该标准不对绝缘物耐高压的能力进行试验,也不考虑直击雷。

该标准的试验等级分类如下:

表1 试验等级

电源模块浪涌防护电路该如何设计?

四、浪涌防护电路

由于电源模块体积小,在EMC要求比较高的场合,需要增加额外的浪涌防护电路,以提升系统EMC性能,提高产品的可靠性。如图2所示,为提高输入级的浪涌防护能力,在外围增加了压敏电阻和TVS管。但图中的电路(a)、(b)原目的是想实现两级防护,但可能适得其反。如果(a)中MOV2的压敏电压和通流能力比MOV1低,在强干扰场合,MOV2可能无法承受浪涌冲击而提前损坏,导致整个系统瘫痪。同样的,电路(b),由于TVS响应速度比MOV快,往往是MOV未起作用,而TVS过早损坏。所以正确的接法一般是如图(c)、(d)所示,在两个MOV或是MOV和TVS之间接一个电感。

电源模块浪涌防护电路该如何设计?
图2 两级浪涌防护

如图3所示,可以在MOV和TVS之间加一个电阻,可以防止TVS先导通到损坏,而MOV还没来得及动作;在选取R的时候要考虑R的功耗,以免R先损坏;同时可以并联电容,吸收能量,提高抗浪涌能力;MOV和TVS的选型很关键,选择适当的最大允许电压和最大通流量很重要,这个就要参照电源模块的输入电压以及浪涌试验等级,如果电压选择小了后端供电不正常,选择大了起不到保护作用,通流量选小了器件容易损坏。

电源模块浪涌防护电路该如何设计?
图3 浪涌防护

转自:ZLG致远电子

围观 13
608

在应用电源模块常见的问题中,降低负载端的纹波噪声是大多数用户都关心的。那么模块的纹波噪声该如何降低?下文为大家从纹波噪声的波形、测试方式、模块设计及应用的角度出发,阐述几种有效降低输出纹波噪声的方法。

一、电源的纹波与噪声介绍

纹波和噪声即:直流电源输出上叠加的与电源开关频率同频的波动为纹波,高频杂音为噪声。具体如图1所示,频率较低且有规律的波动为纹波,尖峰部分为噪声。

降低电源纹波噪声只需三步
图1

二、纹波噪声的测试方法

对于中小微功率模块电源的纹波噪声测试,业内主要采用平行线测试法和靠接法两种。其中,平行线测试法用于引脚间距相对较大的产品,靠测法用于模块引脚间距小的产品。

但不管用平行线测试法还是靠测法,都需要限制示波器的带宽为20MHz。具体如图2和图3所示。

降低电源纹波噪声只需三步
图2 平行线测试法

注1:C1为高频电容,容量为1μF;C2为钽电容,容量为10μF。
注2:两平行铜箔带之间的距离为2.5mm,两平行铜箔带的电压降之和应小于输出电压的2%。
降低电源纹波噪声只需三步
图3 靠测法

三、去除地线夹测试的区别

测试纹波噪声需要把地线夹去掉,主要是由于示波器的地线夹会吸收各种高频噪声,不能真实反映电源的输出纹波噪声,影响测量结果。下面的图4和图5分别展示了对同一个产品,使用地线夹及取下地线夹测试的巨大差异。

降低电源纹波噪声只需三步
图4 使用地线夹测试-示波器垂直分辨率200mv/div

降低电源纹波噪声只需三步
图5 去除地线夹测试-示波器垂直分辨率50mv/div

四、设计上PCB布局的影响

好与坏的PCB布局,是设计上影响纹波噪声的关键因素。差的PCB布局如图6所示,变压器输出的地,直接通过过孔连到背部的地平面,地平面连接电源的输出引脚。此布局在输出5V/2A的负载下,实测电源尖峰达1.5V VP-P。变压器上的噪声没有经过输出的滤波电容直接通过了输出引脚,导致纹波噪声很大。

降低电源纹波噪声只需三步
图6 差的PCB布局

如图7所示是比较好的PCB布局,调整了变压器的位置,将变压器输出地通过两个电容后,再回到地平面和输出引脚相连。实测在相同5V/2A输出的负载下,噪声已降到60mV VP-P,差别显著。
降低电源纹波噪声只需三步

降低电源纹波噪声只需三步
图7 好的PCB布局

五、输出滤波电容的影响

输出滤波电容的容值、ESR对模块输出的纹波噪声也有直接影响。ZLG致远电子P0505FLS-1W测试纹波噪声,外部不加外接电容,测试输出的纹波噪声,如图8所示,约为52mV。同样的输入、负载条件下,电源的输出端放置MLCC,实测电源输出的纹波噪声降到不到36mV。

降低电源纹波噪声只需三步
图8 无外接电容

降低电源纹波噪声只需三步
图9 外加电容

实际应用时,电容除容量、ESR外,建议负载端的电容在回到电源之前,先汇集到输出电容,经过电容滤波后,再回到电源,从而有效降低纹波噪声对电路的影响。如图10所示。
降低电源纹波噪声只需三步
图10 外部电容的位置

六、电感对纹波噪声的影响

电感的感量及寄生电容对纹波噪声的影响同样显著。一般地,感量大时对纹波抑制作用明显,寄生电容小的电感对噪声抑制效果好。以对纹波抑制为例,测试对电源输出纹波的影响,测试图如图11所示。

降低电源纹波噪声只需三步
图11 测试电感滤波效果用例

根据图11,我们先人为的把产品内部的滤波电感短路,只用电容滤波,测得纹波噪声如图12所示,纹波峰峰值约50mV。

降低电源纹波噪声只需三步
图12 人为短路内部滤波电感的纹波噪声图

下一步,在电源外部增加一个LC电路,在相同输入、负载条件下,重测纹波噪声图,如图13所示,纹波已接近直线,非常小。
降低电源纹波噪声只需三步
图13 外加LC的纹波噪声图

七、非纹波的震荡处理

前面介绍了纹波是与开关电源的工作频率相关,但是还有另外一种震荡是与负载的工作频率相关的,如图14所示。

降低电源纹波噪声只需三步
图14 负载工作周期大约1.1s

DC-DC电源模块给MCU、晶振、WiFi模块等电路同时供电,WIFI模块会继续周期性的扫描,扫描开启时,电源模块电流会增加,使得模块输出电压瞬间会有一个下降;同理扫描关断时,模块输出电压会上升突变。

这种模块输出电压的突变,并不是产品本身的纹波噪声,而是由于负载电流的突变,释放了电容电压。减小这类纹波的最好办法,是在负载前段增加π滤波器。

小结:

以上简单从纹波噪声的图例、测试方法开始,描述从电源设计、外部电路应用出发,结合实际测试比较几种降低纹波噪声的方法。实际的工程应用中还需考虑电容、电感的负载效应、自激影响等,需再做深究。

如果在电源模块选型中,选用低纹波噪声的电源模块,可省去外围电路的搭建。致远电子自主研发、生产的隔离电源模块已有近20年的行业积累,打造自主电源IC,推出P系列全工况优选型DC-DC电源,结合合理的PCB设计以及测试规范,较传统设计,纹波噪声低至50mV,为用户打造高可靠性供电环境。并且模块满载效率高达85%,轻载效率仍高至79%,保证全工况高效供电,有效降低电源温升,最大程度保证用户产品的可靠性,是板级直流供电的理想解决方案 。

转自: ZLG致远电子

围观 9
1212

随着科技时代的发展,模块电源越来越受市场青睐,在使用模块电源的时候,应该如何提高模块电源的稳定性和可靠性呢?下面通过几个方向,介绍如何选取外接输入、输出电容,来提高模块电源的使用寿命和整个供电系统的稳定性、可靠性。

在模块电源的实际应用中,外接输入、输出电容的选取往往会从几个方面入手:
  •  电容额定耐压值。
  •  电容的容值。
  •  电容的使用寿命。

下面重点介绍1~2点是如何去选取输入、输出电容的。

一、从电容的额定耐压值去选取

1、在DC-DC电源应用中,外接输入电容的耐压值我们一般会选用1.3-1.4倍耐压。

例如:输入电压为48V那我们选用的滤波电容耐压值就为63V。原因是DC-DC的电源启动电流大,容易导致二次冲击电压过高,从而损坏器件。

2、AC-DC整流滤波电容耐压值选取:在AC-DC整流滤波电路中,根据公式我们能计算出整流后的理论直流电压的大小。

例如:在输入90-265Vac的整流电路中,通过公式计算可以得出整流后的电压范围在127-375Vdc。根据经验我们一般会选取耐压值在1.1-1.3倍理论计算电压值的电容,考虑成本因素有些设计者也会考虑1.0倍理论计算电压值的电容。

二、从输入电容的容值选取

在许多文献中,对于滤波电容 C的选取,多使用经验公式,并认为滤波电容 C越大越好;在一些滤波电路的维修中,技术人员经常用比原电路容量大的电容来代替已坏掉的电容。如图1所示的简单整流滤波电路。

电源模块外围电容如何选型?
图1 输入、输出等效电路

从理论上讲,增大电路中的滤波电容 C容量的确可以使输出电压的波形变得更为平滑、起伏更小,但在电路接通瞬间,电路中所产生的冲击电流因素却不能被忽略;在一些滤波电路的维修中对滤波电容的替换也存在冲击电流的问题,在不更换其他元件的前提下,单纯提高滤波电容的容量会使整个电路的实际使用寿命大大缩短,甚至烧毁整个电路。况且,单纯地提高滤波电容的容量对改善输出电压的作用也是有限的。做一个简单实验外接不同输入电容的大小启动时的电流曲线,如下图所示为输入外接电容大小与启动电流的关系曲线。

电源模块外围电容如何选型?

由此曲线可以看出外接输入电容越大,启动电流就越大,伴随的对电路中冲击电流也越大。对整个电路的威胁也就越来越大。

电源模块外围电容如何选型?

上图为外接电容大小不同的启动电流波形。外接电容在一定情况下,启动电流达到最低值,对整个电路的输入,输出环境有很大的改善。当外接电容超过这个范围就会导致启动电流增大,对其他器件的威胁也就随之增大,导致出现不同程度的器件损坏。

三、输出电容的选取

输出电容的选取,一般考虑的因素是电源的输出纹波噪声和电源的负载能力(容性负载)。在成本允许的情况下,很多人都会认为外接输出滤波电容是越大,可以减小纹波噪声干扰,对系统供电更为稳,这是一种错误的观念。

输出滤波的电容的选取,不单单是考虑纹波噪声因数,还要考虑模块电源的启动能力和承受输入冲击电流的能力。如下图所示:是致远模块输出25w的一款产品,在输出外接大小容值不同情况下的输入电流波形和输出纹波噪声图。

电源模块外围电容如何选型?
外接输出电容470uf测试的输入输出波形图

电源模块外围电容如何选型?
外接输出电容4700uf测试的输入输出波形图

从图上数据可以看出,外接输出电容容值在一定大小的时候对纹波噪声起到减小作用,但随着外接电容的不断增大纹波噪声会处于一个平衡值。反观输入电流波形,在输出电容增大情况下启动时,输入电流维持在大电流时间会越长。假如使用的模块抗输入冲击电流小,这样就可能导致模块在一定时间下受冲击电流过大而损坏。所以外接输出电容也不是越大越好,这要根据模块的启动能力和承受电流冲击能力来选定的。

四、小结

在模块电源的使用过程中合理外接输入、输出电容是对模块模块电容的一种保护,同时也大大提高了电源的使用寿命,减小了因电源输入、输出不稳定而带给整个工作系统存在的不必要隐患。

ZLG致远电源模块的优势: 在我们致远电源模块产品说明中,我们都会给客户详细推荐最为合适的外围电路和外接电容的容值大小,有效的保证了模块在应用场合下的最佳环境,同时也保证了客户使用的安全性和可靠性。避免了因外接电容选型不对带来给模块和整个系统的损失。如下图所示是致远模块双输出的外围电路推荐图和外接电容大小值。

电源模块外围电容如何选型?

为了进一步稳定输入电源,在输入端增加一电容Cin,若为了进一步减小输出纹波和噪声,可在输出端增加一串联等效阻抗小的电容Cout,但容值不能超过该产品的最大容性负载,否则会造成电源模块启动不良。推荐外接电容值,如表1所示。

表1 推荐外接电容值
电源模块外围电容如何选型?

转自: ZLG致远电子

围观 21
1873

电源模块发展至今,工程师们都着眼于如何将模块做得更为小型化,轻量化,其实大家都明白可以通过提升开关频率来提高产品的功率密度。但为什么迄今为止模块的体积没有变化太大?是什么限制了开关频率的提升呢?

开关电源产品在市场的应用主导下,日趋要求小型、轻量、高效率、低辐射、低成本等特点满足各种电子终端设备,为了满足现在电子终端设备的便携式,必须使开关电源体积小、重量轻的特点,因此,提高开关电源的工作频率,成为设计者越来越关注的问题,然而制约开关电源频率提升的因素是什么呢?其实主要包括三方面,开关管、变压器和EMI及PCB设计。

一、开关管与开关频率

开关管作为开关电源模块的核心器件,其开关速度与开关损耗直接影响了开关频率的极限,下文为大家大概分析一下。

1、开关速度

MOS管的损耗由开关损耗和驱动损耗组成,如图1所示:开通延迟时间td(on)、上升时间tr、关断延迟时间td(off)、下降时间tf。

什么限制了电源小型化?

以FAIRCHILD公司的MOS为例,如图2所示:FDD8880开关时间特性表。
什么限制了电源小型化?

对于这个MOS管,它的极限开关频率为:fs=1/(td(on)+tr+td(off)+tf) Hz=1/(8ns+91ns+38ns+32ns) =5.9MHz,在实际设计中,由于控制开关占空比实现调压,所以开关管的导通与截止不可能瞬间完成,即开关的实际极限开关频率远小于5.9MHz,所以开关管本身的开关速度限制了开关频率提高。

2、开关损耗

开关导通时对应的波形图如图3(A),开关截止时对应的波形图如图3(B),可以看到开关管每次导通、截止时开关管VDS电压和流过开关管的电流ID存在交叠的时间(图中黄色阴影位置),从而造成损耗P1,那么在开关频率fs工作状态下总损耗PS=P1 *fs,即开关频率提高时,开关导通与截止的次数越多,损耗也越大,如下图3所示。

什么限制了电源小型化?

二、变压器铁损与开关频率

变压器的铁损主要由变压器涡流损耗产生,如图4所示。

给线圈加载高频电流时,在导体内和导体外产生了变化的磁场垂直于电流方向(图中1→2→3和4→5→6)。根据电磁感应定律,变化的磁场会在导体内部产生感应电动势,此电动势在导体内整个长度方向(L面和N面)产生涡流(a→b→c→a和d→e→f→d),则主电流和涡流在导体表面加强,电流趋于表面,那么,导线的有效交流截面积减少,导致导体交流电阻(涡流损耗系数)增大,损耗加大。

什么限制了电源小型化?

如图5所示,变压器铁损是和开关频率的kf次方成正比,又与磁性温度的限制有关,所以随着开关频率的提高,高频电流在线圈中流通产生严重的高频效应,从而降低了变压器的转换效率,导致变压器温升高,从而限制开关频率提高。
什么限制了电源小型化?

三、EMI及PCB设计与开关频率

假设上述的功率器件损耗解决了,真正做到高频还需要解决一系列工程问题,因为在高频下,电感已经不是我们熟悉的电感,电容也不是我们已知的电容了,所有的寄生参数都会产生相应的寄生效应,严重影响电源的性能,如变压器原副边的寄生电容、变压器漏感,PCB布线间的寄生电感和寄生电容,会造成一系列电压电流波形振荡和EMI问题,同时对开关管的电压应力也是一个考验。

四、小结

要提高开关电源产品的功率密度,首先考虑的是提高其开关频率,能有效减小变压器、滤波电感、电容的体积,但面临的是由开关频率引起的损耗,而导致温升散热设计难,频率的提高也会导致驱动、EMI等一系列工程问题。

ZLG致远电子自主研发、生产的隔离电源模块已有近20年的行业积累,当前采用全新方案,实现同类型产品,体积最小,例如E_UHBDD-10W模块较上一代ZY_UHBD-10W体积缩减了一半,如下图6所示。

什么限制了电源小型化?

同时ZLG致远电子为保证电源产品性能建设了行业内一流的测试实验室,配备最先进、齐全的测试设备,全系列隔离DC-DC电源通过完整的EMC测试,静电抗扰度高达4KV、浪涌抗扰度高达2KV,可应用于绝大部分复杂恶劣的工业现场,为用户提供稳定、可靠的电源隔离解决方案。
什么限制了电源小型化?

转自:ZLG致远电子

围观 15
922

页面

订阅 RSS - 电源模块