单片机

在进行单片机开发时,经常都会出现一些很不起眼的问题,这些问题其实都是很基础的C语言知识点,是一些小细节。

但是正是因为很基础,又都是小细节,所以我们往往容易忽视它们。结果有时候我们会花很长的时间纠结一个问题,迟迟找不到问题的所在。

当发现原因竟然是这么的简单和不起眼时,大家都会感到痛不欲生。这些问题要记录下来,时刻提醒自己!!

1、! 和 ~ 不一样

! 是逻辑非符号,~ 是位取反符号。

对IO口某个引脚赋值时不要错用 ! 如

2、<< 和 >> 的优先级低于+、-

比如要实现c=x*2+1,没有加括号会出错

3、移位要防止溢出

其实用移位代替乘除法是个不错的方法,笔者很喜欢拿到一段代码后用移位代替乘除法来进行优化。不过有时候却会出现问题,比如溢出问题。当很明显可能溢出的话我们是会注意的,比如

但是有时候这个问题是不明显的,比如当移位出现在数组索引或函数参数时,有段用液晶显示字符的代码如下

我们可以用左移运算来代替乘法进行优化,如

这本是一个好方法,但是事实上上面的代码是错的。当执行c<<4时,因为没有明显的赋值过程,我们可能认为没问题,而事实上c的高位已经丢失了,所以得到错误的结果。一个可行的做法是先进行强制转换,如

4、无符号数和有符号数混合运算都会被强制转换为无符号数运算

当一个有符号数和一个无符号数进行算术运算时,系统会自动将有符号数强制转换为无符号数再进行运算(即使你使用有符号数强制类型转换),如下面两种写法的运输结果是一样的

5、局部变量要初始化

局部变量没有初始化的话,因为单片机每次为他分配的是同一个内存区域,当你在函数中是这么使用局部变量时,就可能出问题:

如果第一次调用fun时,a传递的值为0,那么flag = 0x01;执行if(flag&0x01)后面的代码。以后再调用fun时,即使a不为0,但flag依然使用之前的内存区域,所以其值一直为0x01,一直执行的是if后面的代码,而不是else后面的。

如果要避免这个错误,平时要养成对局部变量初始化的习惯。

围观 302

单片机的选型是一件重要而费心的事,如果选型得当,则做出来的产品就会性价比较高,且工作稳定;反之,则可能会造成产品成本过高或影响产品正常运行,甚至可能根本就达不到预先设计要求。一般来说,总的选型原则是:(1)“芯片含有(功能或数量)略大于设计需求”,“设计需求尽可能(用)芯片完成(少用外围器件)”;(2)“选大(大厂)不选小,选多(供应量多)不选少,选名(名牌)不选渺(飘渺,不知详情的厂子),选廉(廉价)但要好(质量保证)”。具体要从单片机应用的技术性、实用性和开可发性等方面来考虑:

1、内存

单片机FLASH的容量根据程序的大小确定,FLASH容量必须大于代码量。举例来说,如果你的代码量大约50 KB,那么建议你选择FLASH容量为64 KB或128 KB的单片机。

2、速度

单片机的运行速度首先看时钟频率,一般情况对于同一种结构的单片机,时钟频率越高速度越快。如果你的设计对速度要求很高,那么要选择一个运行速度较快的单片机。例如,一般情况下,电机控制应用大多采用100ksps或更高的采样速率,因此当单片机用于电机控制时,时钟频率要足够高。总之,在选用单片机时要根据产品需要选择时钟频率,不要片面追求高速度,时钟频率越高功耗也就越大。此外,单片机的稳定性、抗干扰性等参数基本上跟单片机的运行速度成反比。因此,要尽量寻找可以在很高的时钟频率下运行而功耗又不高的单片机。

3、外设需求

如果你的设计需要ADC、SPI、GPIO、USB等之类的外设,那么你需要寻找一款集成所有这些外设的单片机。因为,使用一个具有上述外设的单片机显然比使用一个普通的单片机及外围加一个单独的ADC更为经济。此外,外设集成于单片机同时也意味着更低的功耗,因为没有可以产生功耗的外围电路,也没有用于连接外围电路的能产生功耗的敷铜,只有单片机本身产生功耗。

4、方便的开发工具

这是个非常重要的方面,因为开发工具可以极大地影响你所设计的产品的功耗。很多公司都已经开发出了具有代码优化功能的编译器,所以当你编译代码的时候,编译器会告知具体编译信息,你可以根据编译信息优化代码以降低功耗。举例来说,如果你的设计需要用到ADC、UART和GPIO等外设,你就需要初始化这些器件,但是设计中使用UART是有条件的(仅用于调试时显示结果),此时编译器会提示你禁用这个外设以降低功耗。必须得说这种智能化的开发工具对开发者来说是一种福音。

5、未来需求和兼容性

设计者在设计产品时需要考虑产品未来可能需要升级等之类的问题。例如,若需要给设计增加某些功能,那么可能需要增加内存、外设等,还可能需要加提高单片机的运行速度。因此,在单片机的选型上需要在当前设计需求以及未来设计上寻找平衡,以满足不同程度的要求。

6、成本

一个好的设计不仅要功能完善,而且要满足成本要求,如果无法控制成本,再好的设计也是枉然。因此,需要尽可能地降低单片机甚至整个产品的成本。

7、工作电压(VCC)

单片机的工作电压是指可以让其正常工作所需要提供的电压。工作电压越高,单片机的功耗也就越大。因此,为了降低产品功耗,必须要尽可能地降低工作电压。

除此之外,我还要建议设计者根据具体产品需求选择合适芯片架构。若仅是个简单的控制应用(如照明系统、电子玩具等),那么并不需要一个像ARM那样具有复杂架构的芯片。此外,对于低功耗设计,单片机必须具有睡眠模式,基于中断操作的睡眠模式/低功耗模式的使用是降低功耗的一个标准的行业惯例。

最后再来一句老生常谈:不要拘泥与芯片是否先进,单片机只是一个工具,真正的功夫在于你的专业知识,要用最合适的芯片做出最合适的产品。

围观 377

学习使用单片机就是理解单片机硬件结构,以及内部资源的应用,在汇编或C语言中学会各种功能的初始化设置,以及实现各种功能的程序编制。

第一步:数字I/O的使用

使用按钮输入信号,发光二极管显示输出电平,就可以学习引脚的数字I/O功能,在按下某个按钮后,某发光二极管发亮,这就是数字电路中组合逻辑的功能,虽然很简单,但是可以学习一般的单片机编程思想,例如,必须设置很多寄存器对引脚进行初始化处理,才能使引脚具备有数字输入和输出输出功能。每使用单片机的一个功能,就要对控制该功能的寄存器进行设置,这就是单片机编程的特点,千万不要怕麻烦,所有的单片机都是这样。要注意的是两个功能使用同一组I/O口,比如LCD和LED例程众都是使用PB这一组的,如果两者结合,会有冲突,达不到预期的效果,建议不同的模块使用不同的IO口。

第二步:定时器的使用

学会定时器的使用,就可以用单片机实现时序电路,时序电路的功能是强大的,在工业、家用电气设备的控制中有很多应用,例如,可以用单片机实现一个具有一个按钮的楼道灯开关,该开关在按钮按下一次后,灯亮3分钟后自动灭,当按钮连续按下两次后,灯常亮不灭,当按钮按下时间超过2s,则灯灭。数字集成电路可以实现时序电路,可编程逻辑器件(PLD)可以实现时序电路,可编程控制器(PLC)也可以实现时序电路,但是只有单片机实现起来最简单,成本最低。

定时器的使用是非常重要的,逻辑加时间控制是单片机使用的基础。

第三步:中断

单片机的特点是一段程序反复执行,程序中的每个指令的执行都需要一定的执行时间,如果程序没有执行到某指令,则该指令的动作就不会发生,这样就会耽误很多快速发生的事情,例如,按钮按下时的下降沿。要使单片机在程序正常运行过程中,对快速动作做出反应,就必须使用单片机的中断功能,该功能就是在快速动作发生后,单片机中断正常运行的程序,处理快速发生的动作,处理完成后,在返回执行正常的程序。

中断功能使用中的困难是需要精确地知道什么时候不允许中断发生(屏蔽中断)、什么时候允许中断发生(开中断),需要设置哪些寄存器才能使某种中断起作用,中断开始时,程序应该干什么,中断完成后,程序应该干什么等等。中断学会后,就可以编制更复杂结构的程序,这样的程序可以干着一件事,监视着一件事,一旦监视的事情发生,就中断正在干的事情,处理监视的事情,当然也可以监视多个事情,形象的比喻,中断功能使单片机具有吃着碗里的,看着锅里的功能。以上三步学会,就相当于降龙十八掌武功,会了三掌了,可以勉强护身。

第四步:与PC机进行RS232通信

单片机都有USART接口,其中很多型号都具有两个USART接口。USART接口不能直接与PC机的RS232接口连接,它们之间的逻辑电平不同,需要使用一个芯片进行电平转换。USART接口的使用是非常重要的,通过该接口,可以使单片机与PC机之间交换信息,虽然RS232通信并不先进,但是对于接口的学习是非常重要的。正确使用USART接口,需要学习通信协议,PC机的RS232接口编程等等知识。试想,单片机实验板上的数据显示在PC机监视器上,而PC机的键盘信号可以在单片机实验板上得到显示,将是多么有意思的事情啊!

第五步:学会A/D转换

单片机通常带有A/D转换器,通过这些A/D转换器可以使单片机操作模拟量,显示和检测电压、电流等信号。学习时注意模拟地与数字地、参考电压、采样时间,转换速率,转换误差等概念。使用A/D转换功能的简单的例子是设计一个电压表。

第六步:学会PCI、I2C接口和液晶显示器接口

这些接口的使用可以使单片机更容易连接外部设备,在扩展单片机功能方面非常重要。

第七步:学会比较、捕捉、PWM功能

这些功能可以使单片机能够控制电机,检测转速信号,实现电机调速器等控制起功能。如果以上七步都学会,就可以设计一般的应用系统,相当于学会十招降龙十八掌,可以出手攻击了。

第八步:学习USB接口、TCP/IP接口、各种工业总线的硬件与软件设计

学习USB接口、TCP/IP接口、各种工业总线的硬件与软件设计是非常重要的,因为这是当前产品开发的发展方向。

到此为止,相当于学会15招降龙十八掌,但还不到打遍天下无敌手的境界。即使如此,也算是单片机大侠了。

围观 303

单片机中有象箱子功能一样的地方,我们称为寄存器,用来暂存数据。寄存器的种类有程序计数器、通用寄存器、以及SFR(特殊功能寄存器)等。

SFR主要用来设定外围功能电路(计数器或串行端口、通用I/O等)的工作方式,确认其工作状况,并对其进行控制的。也就是说SFR并非仅仅只是用来保存数据的“箱子”。通过改变保存在“箱子”里的数据,不仅可以改变外围功能电路的动作方式,而且“箱子”里的数据也将随着外围功能电路的工作状況而改变。

控制外围功能电路的基础知识

下面以通用I/O为例来说明单片机对外围功能电路的控制。通用I/O具有以下功能:

输出功能:可以输出高电平电压或低电平电压

输入功能:可以读出输入到引脚的电压电平

首先来看输出功能的控制。图1中的引脚A是一个通用I/O。

如果向引脚A的寄存器(SFR)

写入0,则引脚A的输出电压将为低电平(0V)。

写入1,则引脚A的输出电压将为高电平(5V)。

图1:通用I/O的输出功能

如果将图1的引脚A连接一个LED,就可以构成一个控制LED的电路(见图2)。此时,向寄存器(SFR)写入0则LED亮灯,输入1则LED熄灭。虽然这是一种很简单的动作,但却反映了单片机对各种外围功能电路进行控制的基本原理。利用这种功能,就可以完成象电机的ON/OFF一样的开关作用(由于通常的单片机上不能流过驱动电机运行的大电流,所以还需另行准备用FET或晶体管作成的电机驱动电路)。另外,如果使用多个通用I/O端口,就可以完成更加复杂的控制。

图2:通用I/O的LED控制电路

接下来看输入功能(图3)。

如果向引脚A输入低电平电压(0V),就会从寄存器(SFR)读出0。

如果向引脚A输入高电平电压(5V),就会从寄存器(SFR)读出1。

即,读取寄存器(SFR)的值,就可以判断外部电压是低电平电压还是高电平电压。

图3:通用I/O的输入功能

使用通用I/O的输入功能构成图4所示的电路,单片机就可以判断出开关(S)的状态。

当开关(S)断开时,电源电压通过上拉电阻(R),连接到引脚A(相当于输入高电平电压),寄存器(SFR)将的值变为1。

当开关(S)关闭时,引脚A被连接到低电平电压,寄存器(SFR)的值变为0。

单片机通过读取引脚A的寄存器(SFR)的值,是“1”还是“0”,可以判断外部开关(S)是断开还是关闭状态。

图4:通用IO输入功能构成的开关电路

单片机上搭载了各种功能的SFR。通过程序来更改或读出这些功能寄存器的值,就可获知单片机外围电路的信息,而对外围电路进行控制。所以可以说,SFR就象是单片机的五官或者手脚。

围观 386

CPU懂的机器语言

单片机的CPU从存储器读取程序,但是一次只能读取一条指令,然后解释每条指令,并执行。存储器中保存的内容,不管是程序还是数据,都是二进制代码“0”和“1”组成的字符串。指令二进制代码告诉CPU要做什么,而数据二进制代码则是CPU操作或处理指令时要使用的值。CPU的操作包含加、减运算等指令。这些像密码一样排列的“0”和“1”字符串就是机器语言。比如图1左边显示的就是一个机器语言指令,意思是“将2放入寄存器A(寄存器是CPU内部的储存区域)。

CPU总是按存储器地址的顺序读取指令代码,除非遇到跳跃指令。例如,如果复位后的地址是0000,则从0000开始按0001、0002、0003的顺序读取并执行指令。也可以说,一个程序就是按处理要求排列一系列的机器语言。

CPU只能理解如上所述的机器语言。因此,为了使CPU运行,就必须使用机器语言的程序。但是,机器语言不易为人们识别和读写。因此,人们用了更简单易懂的字符串来代替机器语言,这就是汇编语言。例如,在“给寄存器A赋值2”这样的处理时,如果用汇编语言来表示,就很简单,请看图1的右边部分。汇编语言中,用MOV字符串表示赋值,所以“给寄存器A赋值2”的处理就可用“MOV A,#02”表示。

图1:机器语言和汇编语言的比较

虽然汇编语言比机器语言更加简单易懂了,但是人们读起来还是挺难理解的。而且,汇编语言还存在另一个问题,就是不同的CPU,机器语言的描述方式也不同。因此,如果更换了CPU,就必须改写与机器语言有着密不可分关系的汇编语言,工作量比较大。(以上例子中的机器语言和汇编语言均为瑞萨的RL78族单片机中的语言。)

如上所述,每更换一次CPU都必须对程序进行改编,不但造成生产性低下,还加重了编程人员的负担。

人性化的C语言

能够解决上述问题的编程语言就是C语言。C语言具有不依存于特定的CPU,又具有程序移植性高等的特点。另外,由于编程时可使用人们熟悉的英文单词,所以对编程人员来说C语言是最容易使用的编程语言。下面我们将C语言和汇编语言做一个简单地比较。(图2)

图2:汇编语言和C语言的比较

虽然C语言不依存于CPU而且还是人们最容易使用的编程语言,但对于CPU来说,C语言却是一种完全无法理解的语言。因此,就需要一种可以将C语言翻译为机器语言的软件,这就是被称为编译器 (编译程序) 的软件。 经过编译器翻译的程序的文件格式被称为目标文件格式。如果目标文件格式最终没有被配置到存储器中,CPU就无法执行该程序。

另外,近来由于程序越来越趋于复杂化,所以几乎都采取了将一个程序分割为多个C语言程序文件的结构。所以,还需要一个工具将多个目标文件格式汇总成一个机器语言并配置到存储器上,能够担当起此重任的就是连接编辑程序(linkage editor,也被称为“linker(链接器)”)。

能够找出程序错误的调试器

由人进行编程的应用程序难免会存在错误(bug)。而用来发现和帮助人们修正程序错误的工具被称为调试器(Debugger)。下面简单介绍调试器的类型。

电路内仿真器(In-Circuit Emulator , 简称:ICE) :ICE可取代实际的单片机,与仿真专用的评价单片机(evaluation chip,评价芯片)连接并进行调试。其中,“In-Circuit Emulator”为美国英特尔公司的注册商标,瑞萨将其命名为“Full-spec Emulators”并向市场提供。

J-TAG仿真器:J-TAG仿真器使用单片机内事先预留的调试电路进行调试。也就是说通过实际使用的单片机来进行调试。和ICE相比,J-TAG仿真器的价格较低。瑞萨将其命名为“On-chip Debug Emulator”并向市场提供。

简易仿真器:简易仿真器是使调试用的监视程序在单片机上运行,在与PC通信的同时进行调试。除了调试对象的程序之外,还需启动其他监视程序,所以,与ICE或J-TAG仿真器相比,简易仿真器的程序运行速度慢而且还有各种功能限制。其最大的优点是价格非常低廉。

综合开发环境

正如上面所讲的,在进行单片机的软件开发时,使用了上述的编译器、连接编辑程序、调试器等各种工具。以前,这些软件都是作为单个软件分别提供的,一般是通过命令提示符调出各个程序、或是通过批处理程序调出使用。但是,最近开始以综合开发环境的方式给予提供,综合开发环境就是将各种程序综合到一个程序包中,只需通过Renesas CS+ 等便可很容易地将程序调出使用。

围观 402

对于每个单片机爱好者及工程开发设计人员,在刚接触单片机的那最初的青葱岁月里,都有过点亮跑马灯的经历。从看到那一排排小灯按着我们的想法在跳动时激动心情。到随着经验越多,越来又会感觉到这个小灯是个好东西,尤其是在调试资源有限的环境中,有时会帮上大忙。

但对于绝大多数人,我们在最最初让灯闪烁起来时大约都会用到阻塞延时实现,会像如下代码的样子:

while(1)
{
LED =OFF;
Delay_ms(500);
LED = ON;
Delay_ms(500);
}

然后,在我们接触到定时器,我们会发现,原来用定时中断来处理会更好。比如我们可以500ms中断一次,让灯亮或灭,其余的时间系统还可以做非常之多的事情,效率一下提升了很多。

这时我们就会慢慢意识到,第一种(阻塞延时)方法效率很低,让芯片在那儿空运行几百毫米,什么也不做,真是莫大的浪费,尤其在芯片频率较高,任务又很多时,这样做就像在平坦宽阔的高速公路上挖了一大坑,出现事故可想而知。

但一个单片机中的定时器毕竟有限,如果我需要几十个或者更多不同时间的定时中断,每一个时间到都完成不同的处理动作,如何去做呢。一般我们会想到在一个定时中断函数中再定义static 变量继续定时,到了所需时间,做不同的动作。而这样又会导致在一个中断里做了很多不同的事情,会抢占主轮询更多时间,有时甚至喧宾夺主,并也不是很如的思维逻辑。

那么有没有更好的方法来实现呢,答案是肯定的。下面介绍我在一个项目中偶遇,一个精妙设计的非阻塞定时延时软件的设计(此设计主要针对于无操作系统的裸机程序)。

比如我要设置其10ms中断一次,如何实现呢?

也很简单,只需调用 core_cm3.h文件中 SysTick_Config 函数 ,当系统时钟为72MHZ,则设置成如下即可 SysTick_Config(720000 ); (递减计数720000次后中断一次) 。此时SysTick_Handler中断函数就会10ms进入一次;

任务定时用软件是如何设计的呢 ?

且先看其数据结构,这也是精妙所在之处,在此作自顶向下的介绍:

其定义结构体类型如:

typedef struct
{
uint8_t Tick10Msec;
Char_Field Status;
} Timer_Struct;
其中Char_Field 为一联合体,设计如下:
typedef union
{
unsigned char byte;
Timer_Bit field;
} Char_Field

而它内部的Timer_Bit是一个可按位访问的结构体:

typedef struct
{
unsigned char bit0: 1;
unsigned char bit1: 1;
unsigned char bit2: 1;
unsigned char bit3: 1;
unsigned char bit4: 1;
unsigned char bit5: 1;
unsigned char bit6: 1;
unsigned char bit7: 1;
} Timer_Bit

此联合体的这样设计的目的将在后面的代码中体现出来。
如此结构体的设计就完成了。

然后我们定义的一全局变量,Timer_Struct gTimer;

并在头文件中宏定义如下:

#define bSystem10Msec gTimer.Status.field.bit0
#define bSystem50Msec gTimer.Status.field.bit1
#define bSystem100Msec gTimer.Status.field.bit2
#define bSystem1Sec gTimer.Status.field.bit3
#define bTemp10Msec gTimer.Status.field.bit4
#define bTemp50Msec gTimer.Status.field.bit5
#define bTemp100Msec gTimer.Status.field.bit6
#define bTemp1Sec gTimer.Status.field.bit

另外为了后面程序清晰,再定义一状态指示:

typedef enum
{
TIMER_RESET = 0,
TIMER_SET = 1,
} TimerStatus;

至此,准备工作就完成了。下面我们就开始大显神通了!

首先,10ms定时中断处理函数如,可以看出,每到达10ms 将把bTemp10Msec置1,每50ms 将把bTemp50Msec 置1,每100ms 将把bTemp100Msec 置1,每1s 将把bTemp1Sec 置1,
void SysTick_Handler(void)
{

bTemp10Msec = TIMER_SET;

++gTimer.Tick10Msec;
if (0 == (gTimer.Tick10Msec % 5))
{
bTemp50Msec = TIMER_SET;
}

if (0 == (gTimer.Tick10Msec % 10))
{
bTemp100Msec = TIMER_SET;
}

if (100 == gTimer.Tick10Msec)
{
gTimer.Tick10Msec = 0;
bTemp1Sec = TIMER_SET;
}
}

而这又有什么用呢 ?

这时,我们需在主轮询while(1)内最开始调用一个定时处理函数如下:

void SysTimer _Process(void)
{
gTimer.Status.byte &= 0xF0;

if (bTemp10Msec)
{
bSystem10Msec = TIMER_SET;
}

if (bTemp50Msec)
{
bSystem50Msec = TIMER_SET;
}

if (bTemp100Msec)
{
bSystem100Msec = TIMER_SET;
}

if (bTemp1Sec)
{
bSystem1Sec = TIMER_SET;
}

gTimer.Status.byte &= 0x0F;
}

此函数开头与结尾两句

gTimer.Status.byte &= 0xF0;
gTimer.Status.byte &= 0x0F

就分别巧妙的实现了bSystemXXX (低4位) 和 bTempXXX(高4位)的清零工作,不用再等定时到达后还需手动把计数值清零。此处清零工作用到了联合体中的变量共用一个起始存储空间的特性。

但要保证while(1)轮询时间要远小于10ms,否则将导致定时延时不准确。这样,在每轮询一次,就先把bSystemXXX ,再根据bTempXXX判断是否时间到达,并把对应的bSystemXXX 置1,而后面所有的任务就都可以通过bSystemXXX 来进行定时延时,在最后函数退出时,又会把bTempXXX清零,为下一次时间到达后查询判断作好了准备。

说了这么多,举例说明一下如何应用:

void Task_A_Processing(void)
{
if(TIMER_SET == bSystem50Msec){
//do something
}
}

void Task_B_Processing(void)
{
if(TIMER_SET == bSystem100Msec){
//do something
}
}

void Task_C_Processing(void)
{
static uint8_t ticks = 0;
if(TIMER_SET == bSystem100Msec){
ticks ++ ;
}

if(5 == ticks){
ticks = 0;
//do something
}

}

void Task_D_Processing(void)
{
if(TIMER_SET == bSystem1Sec){
//do something
}
}

以上示例四个任务进程,

在主轮询里可进行如下处理:

int main(void)
{
while(1)
{
SysTimer _Process();

Task_A_Processing();
Task_B_Processing();
Task_C_Processing();
Task_D_Processing();

}
}

这样,就可以轻松且清晰实现了多个任务,不同时间内处理不同事件。(但注意,每个任务处理中不要有阻塞延时,也不要处理过多的事情,以致处理时间较长。可设计成状态机来处理不同任务。)

围观 365

页面

订阅 RSS - 单片机