元器件

问:PCB板上常见标注符号的含义(元器件标识)

大多数PCB电路板的每个部分都有一个标注符号。这些符号标注了板上的组件类型和放置位置。通过查看故障部件的标注符号,有助于工程师确定所需要的元器件的类型。
以下是一些标注符号的示例:
1.jpg

C20 :板上第20个电容器

2.jpg

 L24 :板上第24个电感

3.jpg

D108 :板上第108个二极管

更多更详细的PCB标注符号的含义总结如下:

标注符号

符号的含义

A

可分离组件或子组件(如印刷电路组件)

AT

衰减器或隔离器

BR

桥式整流器

BT

电池

C

电容器

CN

电容网络

D,  CR

二极管(所有类型,包括LED)、晶闸管

DL

延迟线

DS

显示器、通用光源、灯、信号灯

F

熔丝

FB

铁素体磁珠

FD

基准

FL

过滤器

G

发生器或振荡器

GN

广义网络

H

硬件,如螺钉、螺母、垫圈

HY

循环器或定向耦合器

IR

红外二极管

J

插孔(连接器对中最小的可移动连接器)、插孔连接器(连接器可能具有公引脚触点和/或母插座触点)

JP

跳线(链路)

K

继电器或接触器

L

电感器或线圈或铁氧体磁珠

LS

扬声器或蜂鸣器

M

电机

MK

麦克风

MP

中压机械部件(包括螺钉和紧固件)

OP

光隔离器

P

插头(连接器对中最可移动的连接器)、插头连接器(连接器可能具有公引脚触点和/或母插座触点)

PS

电源

Q

晶体管(所有类型)

R

电阻

RN

电阻网络

RT

热敏电阻

RV

变阻器,可变电阻器

S

开关(所有类型,包括按钮)

T

变压器

TC

热电偶

TP

测试点

TUN

调谐器

U

集成电路(IC

V

真空管

VR

电压调节器(参考电压)、可变电阻器(电位计或变阻器)

X

另一个项目的插座连接器,不是PJ,与该项目的字母符号配对(XV表示真空管插座,XF表示保险丝座,XA表示印刷电路组件连接器,XU表示集成电路连接器,XDS表示灯座等)

XTAL

晶体

Y

晶体或振荡器

来源:得捷电子DigiKey

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 382

本文的关键要点

▶ 电源电路无法启动(不工作)的原因之一是由于手工焊接导致的IC和外围元器件受损。

▶ 当通过手工焊接将IC和外围元器件安装到电路板上时,需要遵守每个元器件的手工焊接推荐条件。

▶ 当元器件采用表面贴装形式,且元器件尺寸越小时,就越容易被手工焊接时的热和机械应力损坏。

LDO和三端稳压器等线性稳压器,因其设计简单且价格低廉而被广泛用于各种应用中,只要是电子电路的设计人员,应该都用过这类电源IC。然而,在某些使用方式、使用条件和负载条件下,可能会发生无法启动的问题。在“内置线性稳压器的电源无法启动的故障案例”系列中,将会介绍在使用线性稳压器IC的电源电路中发生电源无法启动的案例。

案例一、手工焊接导致IC和外围元器件受损

线性稳压器IC和外围元器件通过焊接安装在PCB(印刷电路板)上。量产时是通过自动设备来管理焊接温度和时间的,因此通常不会出现问题。但是在试制或返工等情况下,会使用电烙铁进行手工焊接,这时可能会损坏IC和外围元器件,导致电源电路无法启动(不工作)。

IC的安装条件在产品官网的相关产品页面下“封装和质量数据”中的“安装规范”中会提供(例:ROHM官网链接)。对于可以使用电烙铁手工焊接的封装,提供了推荐焊接条件,需要按照这些条件进行焊接。条件示例如下。

TO252-3封装的电烙铁焊接推荐条件示例

☆ 电烙铁温度:380℃以下

☆ 焊接时间:4秒以下(每个引脚)

“点击图片查看详情”
点击图片查看详情

但是,如果超过该条件值,IC可能会因封装开裂或内部键合线脱落等问题而损坏。另外,如果是不建议使用电烙铁进行安装的封装,在试制时不得不使用电烙铁的情况下,损坏风险会增加,因此需要在短时间内进行精心焊接,当电路不能正常启动(工作)时,可以怀疑IC是否受损。

此外,不仅IC会因手工焊接而受损,电阻器和陶瓷电容器等构成外围电路的表面贴装元器件也有同样的可能性。每种元器件的技术规格书等资料中会提供手工焊接的推荐条件,应按照这些条件进行焊接。条件示例如下。

电阻器的手工焊接推荐条件示例

☆ 电烙铁头的温度:350℃

☆ 焊接时间:4s Max

☆ 次数:1次

☆ 功率:20W Max

* 0603(0201)、0602(01005)尺寸的产品除外

基本上,元器件的尺寸越小,用电烙铁焊接时越容易受损。特别是1005(0402)尺寸以下的元器件容易受到外部应力的影响,引脚电极可能会因过热或来自电烙铁头的外力而剥落,从而导致开路故障。尤其是重复使用同一产品时容易发生这种问题。引脚电极的剥落很难通过肉眼进行判别。如果通过分压电阻设置的输出电压没有正常工作,或者出现异常波形,可以怀疑是外围元器件受损。

来源:罗姆半导体集团
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 90

PCB设计,既是科学也是艺术。其中有非常多关于布线线宽、布线叠层、原理图等等相关的技术规范,但当你涉及到PCB设计中具有艺术特质元器件布局问题时,问题就变得有趣起来了。

事实上,关于元器件摆放限制很少,也没有“绝对正确”的规范要求,这也使得初学者电子工程师在摆布电路板上元器件时,就像个十足的“中二”,向往着个人抱负和创造性,如何摆放完全依赖于你和设计思路。

但这并不意味着你可以为所欲为,计算机中的设计最终还是需要降落凡尘,形成具体可用之物,因此下面十条PCB元器件摆放小建议可以指导电子初学者完成平稳走过电子设计初始阶段。

为什么元器件摆放那么重要?

有一句老话(不知谁说的)PCB设计90%在器件布局,10%在布线,这的确是一句大实话。开始费尽心思精细摆放器件可以起到事半功倍的效果,也可以提高PCB的电气特性。如果你只是将元器件随意任性在电路板上胡乱摆放,那会发生什么?

  • 时间被打水漂:很大可能性你在布线的过程中就发现有些地方根本没有足够空间走线,甚至整个布线需要推倒重来。

  • 电路板不工作:你本以为将器件放置好,并将所有的引线布完就万事大吉了。将设计文件发送给电路板制造商,等几天接到崭新的电路板。正准备兴高采烈焊接电路的时候就被现实猛烈打脸,发现有些器件根本无法焊接(要么封装不对,要么相互有冲突)。

  • 美学碎了一地:我们必须承认,即使我们只是谦卑的工程师,在对美学的追求上还是认同对称、细致。那种一开始被缺少爱和不走心的人进行元器件摆放的电路板,在后期焊接和调试过程会给让人感到更加的堵心,涌入眼帘的只有葛优瘫。

如果你碰上一个杠精,会跟你辩论,元器件的摆放哪里什么条条框框,同一个电路图,100个电子工程师会有1000种布线方案。这也就是为什么说设计电路板更多被看成是艺术创作过程。

“▲
▲ 一个优雅、充满艺术气息,被用心设计的电路板很容易吸引眼球。对称、整洁,器件摆放那么美好!

如果你遇事总想弄清对和错,下面倒是有一个小技巧帮你判断是否你的电路板元器件摆放是否合适。在器件摆放完之后,使用电路板设计软件中的自动布线(比如 Autodesk EAGLE中提供的)进行布线,如果最终电路不通率低于85%,这就说明你需要多花些时间优化元器件的摆放了。

下面就让我们少“逼逼”,多说些关于器件摆放的干货吧。

技巧1:弄清电路板物理限制

摆放元器件之前,首先需要确切知道电路板的安装孔、边缘接插件的位置以及电路板的机械尺寸限制。为啥呀?

因为这些因素影响你的电路板的尺寸和外形。曾见过某位设计的电路板无法装进电路板固定区域,只好重新设计。

为了避免犯傻,可以有意对那些机械限制(安装孔、电路外轮廓)设置一个清空区,这样你就可以放心在允许范围内进行创作了。

“▲
▲ 四旋翼,或者其他柔性可穿戴电路往往需要电路板具有有趣的外观。这就是一个用于迷你四旋翼上的信号接收电路的外观设计

技巧2:弄清电路板制作工艺

同样,在放置电路元器件之前,你最好从电路生产商那儿弄清几个关键信息:

  • 电路的组装工艺和测试流程;
  • 是否需要对PCB V型切槽预留空间;
  • 元器件焊接工艺:是波峰焊、分区焊接还是手工焊接?

电路板制作工艺将会影响元器件之间空隙大小需求。还有,如果你的电路板将来会在流水线上被焊接,你就需要在电路板边缘额外留出空间(大于20mil)用于电路板固定在传送带上。电路板上额外的固定板,它在电路板焊接完之后被掰掉。

“PCB元器件摆放的十条小技巧,你都知道吗?"

技巧3:给集成芯片留下喘气空间

注意,这里所说的“喘气”不是空气,至于是什么,看完下面你就清楚了 。在布置任何元器件的时候,都需要尽可能在它们之间留下至少350mil的距离,对于引脚多的芯片,留的空间需要更大。为何?

现在的芯片引脚原来越多,越来越密。如果集成芯片相距过于亲密,就会有很大可能无法将它们的引线轻松的引出布线。往往是越到后来布线越难,有的时候费心布通一根线就要消耗掉你100根头发,甚至到了叫天天不应,叫地地不灵的困境。(早知如此,何必当初)

“▲
▲ 看到了吧,这种BGA封装的芯片,引脚那么密集。如果在它周围不预留下足够的空间,在布线的时候有你好看的

技巧4:相同器件方向一致

对于相同的器件尽可能让他们排好队,保持一致的队形。你有强迫症?这样做主要为了便于后期电路板的组装、检查和测试,尤其对表面封装的器件在波峰焊接过程中,电路板匀速经过融化焊锡波峰。均匀摆放的器件加热过程均匀,可以保证焊点一致性高。

下面这个例子显示了均匀摆放器件适合匀速波峰焊接工艺。

“▲
▲ 元器件摆放均匀的例子,器件方向一致适合匀速波峰焊过程

如果按照下面这样凌乱的摆放,波峰焊接对于不同器件的焊盘质量会有差异,特别当有些小型器件恰好位于大型器件之间时,就会形成“阴影”效应,小器件可能就会焊接不良。

“▲
▲ 凌乱摆放元器件的例子:方向不同的器件在波峰焊接时候会容易形成不良焊点

技巧5:减少引线交叉

通过调整器件位置和方向,减少引线交叉。咋弄?

现在很多PCB设计软件都会提供一种功能,显示没有布通管脚对之间的连接关系。比如下图就显示了原理图中所有器件管脚之间的连接关系,通过图中细的灰色直线表示(这种线被称为ratsnest:y飞线,预拉线)。

“▲
▲ 显示飞线的PCB界面

通过改变器件的位置和方向,尽量减少器件之间引线交叉,可以为后面布线节省大量的精力。

技巧6:先摆放电路边缘器件

对于因受机械限制而无法任意移动的器件要先进行摆放,比如电路板上的外部接插件、开关、USB端口等等。为什么?

这些器件往往是有系统整体机械设计时就确定下的位置,不容更改。在摆放完这些器件之后,也就使得你在后面器件安排有了一个光荣的起点。搞定电路板边缘器件,剩下就是你发挥自己想象力和创造力的高光时刻了。

“▲
▲ 计算机主板上的外围接口器件位置是与机箱设计紧密相关的,它们的位置需要预先确定下来

技巧7:避免器件之间冲突

绝对避免为了在小的电路板中布线而将器件的焊盘重叠共用,或使得器件边缘重叠。最好在所有器件之间保持40mil(1mm)的距离。你有密集恐惧症?

最重要原因是为了避免在之后电路制作过程中在焊盘之间产生短路故障。别忘了,紧密摆放也会使得布线变得更加的困难。同样,在放置过孔的时候也要避免过于密集。这些小圆孔将来也可能裸露出铜皮,造成电路的短路。

技巧8:将器件尽量放在同一面

如果你设计两层电路板,最常见的建议就是将器件摆放在同一面。为什么呀?

如果不将器件放在电路板的同一面,就会使得后期电路板制作费事费力。下面告诉你原因,通常情况下,电路板上的器件是通过自动器件摆放机器完成,器件只在一面,生产PCB过程只需要一遍即可。否则,就需要两次器件摆放。浪费了生产时间,就是浪费金钱和生命。

技巧9:保持芯片管脚和器件极性一致

每个集成芯片都有标志给出管脚1的起始位置。对于芯片的管脚1所在的方位,或者有极性的器件(电机电容、二极管、三极管、LED等等)方向保持一致,也会给电路板制作带来方便。有这必要吗?

如果你亲自焊接或者调试过电路板,你就不会怀疑这一点。想想看,当你焊接电路板上的元器件的极性和方向非常凌乱,是不是对于成功焊接电路板你心里也没有底?

“▲
▲ 通常集成芯片封装上会有小点表示管脚1的位置。保持所有芯片的方向一致便于你焊接和检查

技巧10:器件位置与原理图上相似

在摆放元器件时,脑子里按照你的原理图上的位置关系进行摆放。原因何在?

实际上,你在设计原理图的时候就已经优化了器件之间的位置关系(连线最短、交叉最少),所以呢,按照原理图上器件位置来直到PCB器件的摆放有天然的合理性。特别是,在后期手工布线的时候,脑子里的原理图也会暗地里帮你选择合理的短路径来布线。

约束下的创作

最好的PCB设计起源于器件非凡的布局,不要轻易糊弄过去。你要一直坚持把精力放在器件的合理摆放,这个过程所有的努力都是值得的,这也许是你在PCB设计中最值得全力以赴的过程。当你看到设计PCB变成电路板成品时,将是品尝劳动果实的幸福时光。

来源:网络
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 62

电容故障

电容损坏引发的故障在电子设备中是最高的,其中尤其以电解电容的损坏最为常见。电容损坏表现为:容量变小、完全失去容量、漏电、短路。

电容在电路中所起的作用不同,引起的故障也各有特点:在工控电路板中,数字电路占绝大多数,电容多用做电源滤波,用做信号耦合和振荡电路的电容较少。用在开关电源中的电解电容如果损坏,则开关电源可能不起振,没有电压输出;或者输出电压滤波不好,电路因电压不稳而发生逻辑混乱,表现为机器工作时好时坏或开不了机,如果电容并在数字电路的电源正负极之间,故障表现同上。

这在电脑主板上表现尤其明显,很多电脑用了几年就出现有时开不了机,有时又可以开机的现象,打开机箱,往往可以看见有电解电容鼓包的现象,如果将电容拆下来量一下容量,发现比实际值要低很多。

电容的寿命与环境温度直接有关,环境温度越高,电容寿命越短。这个规律不但适用电解电容,也适用其它电容。所以在寻找故障电容时应重点检查和热源靠得比较近的电容,如散热片旁及大功率元器件旁的电容,离其越近,损坏的可能性就越大。所以在检修查找时应有所侧重。

有些电容漏电比较严重,用手指触摸时甚至会烫手,这种电容必须更换。在检修时好时坏的故障时,排除了接触不良的可能性以外,一般大部分就是电容损坏引起的故障了。所以在碰到此类故障时,可以将电容重点检查一下,换掉电容后往往令人惊喜。

电阻故障

常看见许多初学者在检修电路时在电阻上折腾,又是拆又是焊的,其实修得多了,你只要了解了电阻的损坏特点,就不必大费周章。

电阻是电器设备中数量最多的元件,但不是损坏率最高的元件。电阻损坏以开路最常见,阻值变大较少见,阻值变小十分少见。常见的有碳膜电阻、金属膜电阻、线绕电阻和保险电阻几种。

前两种电阻应用最广,其损坏的特点一是低阻值 (100Ω以下) 和高阻值 (100kΩ以上) 的损坏率较高,中间阻值 (如几百欧到几十千欧) 的极少损坏;二是低阻值电阻损坏时往往是烧焦发黑,很容易发现,而高阻值电阻损坏时很少有痕迹。

线绕电阻一般用作大电流限流,阻值不大;圆柱形线绕电阻烧坏时有的会发黑或表面爆皮、裂纹,有的没有痕迹;水泥电阻是线绕电阻的一种,烧坏时可能会断裂,否则也没有可见痕迹;保险电阻烧坏时有的表面会炸掉一块皮,有的也没有什么痕迹,但绝不会烧焦发黑。根据以上特点,在检查电阻时可有所侧重,快速找出损坏的电阻。

根据以上列出的特点,我们先可以观察一下电路板上低阻值电阻有没有烧黑的痕迹,再根据电阻损坏时绝大多数开路或阻值变大以及高阻值电阻容易损坏的特点,我们就可以用万用表在电路板上先直接量高阻值的电阻两端的阻值。

如果量得阻值比标称阻值大,则这个电阻肯定损坏 (要注意等阻值显示稳定后才下结论,因为电路中有可能并联电容元件,有一个充放电过程) ,如果量得阻值比标称阻值小,则一般不用理会它。这样在电路板上每一个电阻都量一遍,即使“错杀”一千,也不会放过一个了。

运算放大器故障

运算放大器好坏的判别对相当多的电子维修者有一定的难度,不只文化程度的关系,在此与大家共同探讨一下,希望对大家有所帮助。

理想运算放大器具有“虚短”和“虚断”的特性,这两个特性对分析线性运用的运放电路十分有用。为了保证线性运用,运放必须在闭环(负反馈)下工作。如果没有负反馈,开环放大下的运放成为一个比较器。如果要判断器件的好坏,先应分清楚器件在电路中是做放大器用还是做比较器用。

根据放大器虚短的原理,就是说如果这个运算放大器工作正常的话,其同向输入端和反向输入端电压必然相等,即使有差别也是mv级的,当然在某些高输入阻抗电路中,万用表的内阻会对电压测试有点影响,但一般也不会超过0.2V,如果有0.5V以上的差别,则放大器必坏无疑。

如果器件是做比较器用,则允许同向输入端和反向输入端不等。同向电压>反向电压,则输出电压接近正的最大值;同向电压<反向电压,则输出电压接近0V或负的最大值(视乎双电源或单电源)。如果检测到电压不符合这个规则,则器件必坏无疑!这样你不必使用代换法,不必拆下电路板上的芯片就可以判断运算放大器的好坏了。

SMT元件故障

有些贴片元件非常细小,用普通万用表表笔测试检修时很不方便,一是容易造成短路,二是对涂有绝缘涂层的电路板不便接触到元件管脚的金属部分。这里告诉大家一个简便方法,会给检测带来不少方便。

取两枚最小号的缝衣针,将之与万用表笔靠紧,然后取一根多股电缆里的细铜线,用细铜线将表笔和缝衣针绑在一起,再用焊锡焊牢。这样用带有细小针尖的表笔去测那些SMT元件的时候就再无短路之虞,而且针尖可以刺破绝缘涂层,直捣关键部位,再也不必费神去刮那些膜膜了。

公共电源短路故障

电路板维修中,如果碰到公共电源短路的故障往往头大,因为很多器件都共用同一电源,每一个用此电源的器件都有短路的嫌疑。

如果板上元件不多,采用“锄大地”的方式终归可以找到短路点;如果元件太多,“锄大地”能不能锄到状况就要靠运气了。在此推荐一比较管用的方法,采用此法,事半功倍,往往能很快找到故障点。

要有一个电压电流皆可调的电源,电压0-30V,电流0-3A,这种电源不贵,大概300元左右。将开路电压调到器件电源电压水平,先将电流调至最小,将此电压加在电路的电源电压点如74系列芯片的5V和0V端,视乎短路程度,慢慢将电流增大。用手摸器件,当摸到某个器件发热明显,这个往往就是损坏的元件,可将之取下进一步测量确认。当然操作时电压一定不能超过器件的工作电压,并且不能接反,否则会烧坏其它好的器件。

板卡故障

工业控制用到的板卡越来越多,很多板卡采用金手指插入插槽的方式。由于工业现场环境恶劣,多尘、潮湿、多腐蚀气体的环境易使板卡产生接触不良故障,很多朋友可能通过更换板卡的方式解决了问题,但购买板卡的费用非常可观,尤其某些进口设备的板卡。

其实大家不妨使用橡皮擦在金手指上反复擦几下,将金手指上的污物清理干净后,再试机,没准就解决了问题,方法简单又实用。

电气故障

各种时好时坏电气故障从概率大小来讲大概包括以下几种情况:

  • 接触不良:板卡与插槽接触不良、缆线内部折断时通时不通、线插头及接线端子接触不好、元器件虚焊等皆属此类;

  • 信号受干扰:对数字电路而言,在特定的情况条件下故障才会呈现,有可能确实是干扰太大影响了控制系统使其出错,也有电路板个别元件参数或整体表现参数出现了变化,使抗干扰能力趋向临界点从而出现故障;

  • 元器件热稳定性不好:从大量的维修实践来看,其中首推电解电容的热稳定性不好,其次是其它电容、三极管、二极管、IC、电阻等;

  • 电路板上有湿气、尘土等:湿气和积尘会导电具有电阻效应,而且在热胀冷缩的过程中阻值还会变化,这个电阻值会同其它元件有并联效果,这个效果比较强时就会改变电路参数使故障发生;

  • 软件也是考虑因素之一:电路中许多参数使用软件来调整,某些参数的裕量调得太低处于临界范围,当机器运行工况符合软件判定故障的理由时,那么报警就会出现。

来源:网络
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 15

PCB设计,既是科学也是艺术。其中有非常多关于布线线宽、布线叠层、原理图等等相关的技术规范,但当你涉及到PCB设计中具有艺术特质元器件布局问题时,问题就变得有趣起来了。

事实上,关于元器件摆放限制很少,也没有“绝对正确”的规范要求,这也使得初学者电子工程师在摆布电路板上元器件时,就像个十足的“中二”,向往着个人抱负和创造性,如何摆放完全依赖于你和设计思路。

但这并不意味着你可以为所欲为,计算机中的设计最终还是需要降落凡尘,形成具体可用之物,因此下面十条PCB元器件摆放小建议可以指导电子初学者完成平稳走过电子设计初始阶段。

为什么元器件摆放那么重要?

有一句老话(不知谁说的)PCB设计90%在器件布局,10%在布线,这的确是一句大实话。开始费尽心思精细摆放器件可以起到事半功倍的效果,也可以提高PCB的电气特性。如果你只是将元器件随意任性在电路板上胡乱摆放,那会发生什么?

时间被打水漂:很大可能性你在布线的过程中就发现有些地方根本没有足够空间走线,甚至整个布线需要推倒重来。

电路板不工作:你本以为将器件放置好,并将所有的引线布完就万事大吉了。将设计文件发送给电路板制造商,等几天接到崭新的电路板。正准备兴高采烈焊接电路的时候就被现实猛烈打脸,发现有些器件根本无法焊接(要么封装不对,要么相互有冲突)。

美学碎了一地:我们必须承认,即使我们只是谦卑的工程师,在对美学的追求上还是认同对称、细致。那种一开始被缺少爱和不走心的人进行元器件摆放的电路板,在后期焊接和调试过程会给让人感到更加的堵心,涌入眼帘的只有葛优瘫。

如果你碰上一个杠精,会跟你辩论,元器件的摆放哪里什么条条框框,同一个电路图,100个电子工程师会有1000种布线方案。这也就是为什么说设计电路板更多被看成是艺术创作过程。

“▲
▲ 一个优雅、充满艺术气息,被用心设计的电路板很容易吸引眼球。对称、整洁,器件摆放那么美好!

如果你遇事总想弄清对和错,下面倒是有一个小技巧帮你判断是否你的电路板元器件摆放是否合适。在器件摆放完之后,使用电路板设计软件中的自动布线(比如 Autodesk EAGLE中提供的)进行布线,如果最终电路不通率低于85%,这就说明你需要多花些时间优化元器件的摆放了。

下面就让我们少“逼逼”,多说些关于器件摆放的干货吧。

技巧1:弄清电路板物理限制

摆放元器件之前,首先需要确切知道电路板的安装孔、边缘接插件的位置以及电路板的机械尺寸限制。

为啥呀?

因为这些因素影响你的电路板的尺寸和外形。曾见过某位设计的电路板无法装进电路板固定区域,只好重新设计。

为了避免犯傻,可以有意对那些机械限制(安装孔、电路外轮廓)设置一个清空区,这样你就可以放心在允许范围内进行创作了。

“▲
▲ 四旋翼,或者其他柔性可穿戴电路往往需要电路板具有有趣的外观。这就是一个用于迷你四旋翼上的信号接收电路的外观设计

技巧2:弄清电路板制作工艺

同样,在放置电路元器件之前,你最好从电路生产商那儿弄清几个关键信息:

  • 电路的组装工艺和测试流程;
  • 是否需要对PCB V型切槽预留空间;
  • 元器件焊接工艺:是波峰焊、分区焊接还是手工焊接?

咋的啦?

电路板制作工艺将会影响元器件之间空隙大小需求。还有,如果你的电路板将来会在流水线上被焊接,你就需要在电路板边缘额外留出空间(大于20mil)用于电路板固定在传送带上。电路板上额外的固定板,它在电路板焊接完之后被掰掉。

技巧3:给集成芯片留下喘气空间

注意,这里所说的“喘气”不是空气,至于是什么,看完下面你就清楚了 。

在布置任何元器件的时候,都需要尽可能在它们之间留下至少350mil的距离,对于引脚多的芯片,留的空间需要更大。

为何?

现在的芯片引脚原来越多,越来越密。如果集成芯片相距过于亲密,就会有很大可能无法将它们的引线轻松的引出布线。往往是越到后来布线越难,有的时候费心布通一根线就要消耗掉你100根头发,甚至到了叫天天不应,叫地地不灵的困境。(早知如此,何必当初)

“▲
▲ 看到了吧,这种BGA封装的芯片,引脚那么密集。如果在它周围不预留下足够的空间,在布线的时候有你好看的

技巧4:相同器件方向一致

对于相同的器件尽可能让他们排好队,保持一致的队形。

你有强迫症?

这样做主要为了便于后期电路板的组装、检查和测试,尤其对表面封装的器件在波峰焊接过程中,电路板匀速经过融化焊锡波峰。均匀摆放的器件加热过程均匀,可以保证焊点一致性高。

下面这个例子显示了均匀摆放器件适合匀速波峰焊接工艺。

“
▲ 元器件摆放均匀的例子,器件方向一致适合匀速波峰焊过程

如果按照下面这样凌乱的摆放,波峰焊接对于不同器件的焊盘质量会有差异,特别当有些小型器件恰好位于大型器件之间时,就会形成“阴影”效应,小器件可能就会焊接不良。

“▲
▲ 凌乱摆放元器件的例子:方向不同的器件在波峰焊接时候会容易形成不良焊点

技巧5:减少引线交叉

通过调整器件位置和方向,减少引线交叉。

咋弄?

现在很多PCB设计软件都会提供一种功能,显示没有布通管脚对之间的连接关系。比如下图就显示了原理图中所有器件管脚之间的连接关系,通过图中细的灰色直线表示(这种线被称为ratsnest:y飞线,预拉线)。

“▲
▲ 显示飞线的PCB界面

通过改变器件的位置和方向,尽量减少器件之间引线交叉,可以为后面布线节省大量的精力。

技巧6:先摆放电路边缘器件

对于因受机械限制而无法任意移动的器件要先进行摆放,比如电路板上的外部接插件、开关、USB端口等等。

为什么?

这些器件往往是有系统整体机械设计时就确定下的位置,不容更改。在摆放完这些器件之后,也就使得你在后面器件安排有了一个光荣的起点。搞定电路板边缘器件,剩下就是你发挥自己想象力和创造力的高光时刻了。

“▲
▲ 计算机主板上的外围接口器件位置是与机箱设计紧密相关的,它们的位置需要预先确定下来

技巧7:避免器件之间冲突

绝对避免为了在小的电路板中布线而将器件的焊盘重叠共用,或使得器件边缘重叠。最好在所有器件之间保持40mil(1mm)的距离。

你有密集恐惧症?

最重要原因是为了避免在之后电路制作过程中在焊盘之间产生短路故障。别忘了,紧密摆放也会使得布线变得更加的困难。

同样,在放置过孔的时候也要避免过于密集。这些小圆孔将来也可能裸露出铜皮,造成电路的短路。

技巧8:将器件尽量放在同一面

如果你设计两层电路板,最常见的建议就是将器件摆放在同一面。

为什么呀?

如果不将器件放在电路板的同一面,就会使得后期电路板制作费事费力。下面告诉你原因,通常情况下,电路板上的器件是通过自动器件摆放机器完成,器件只在一面,生产PCB过程只需要一遍即可。否则,就需要两次器件摆放。浪费了生产时间,就是浪费金钱和生命。

技巧9:保持芯片管脚和器件极性一致

每个集成芯片都有标志给出管脚1的起始位置。对于芯片的管脚1所在的方位,或者有极性的器件(电机电容、二极管、三极管、LED等等)方向保持一致,也会给电路板制作带来方便。

有这必要吗?

如果你亲自焊接或者调试过电路板,你就不会怀疑这一点。想想看,当你焊接电路板上的元器件的极性和方向非常凌乱,是不是对于成功焊接电路板你心里也没有底?

“▲
▲ 通常集成芯片封装上会有小点表示管脚1的位置。保持所有芯片的方向一致便于你焊接和检查

技巧10:器件位置与原理图上相似

在摆放元器件时,脑子里按照你的原理图上的位置关系进行摆放。

原因何在?

实际上,你在设计原理图的时候就已经优化了器件之间的位置关系(连线最短、交叉最少),所以呢,按照原理图上器件位置来直到PCB器件的摆放有天然的合理性。特别是,在后期手工布线的时候,脑子里的原理图也会暗地里帮你选择合理的短路径来布线。

约束下的创作

最好的PCB设计起源于器件非凡的布局,不要轻易糊弄过去。你要一直坚持把精力放在器件的合理摆放,这个过程所有的努力都是值得的,这也许是你在PCB设计中最值得全力以赴的过程。当你看到设计PCB变成电路板成品时,将是品尝劳动果实的幸福时光。

参考资料
[1]The Top 10 PCB Component Placement Tips for the PCB Beginner:
https://www.autodesk.com/products/eagle/blog/top-10-pcb-component-placem...

本文转载自:TsinghuaJoking (作者卓晴)
声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请后台联系小编进行处理。

围观 29

电子设备中半导体元器件的热设计

热量通过物体和空间传递。传递是指热量从热源转移到他处。

01、三种热传递形式

热传递主要有三种形式:传导、对流和辐射。

  • 传导:由热能引起的分子运动被传播到相邻分子。

  • 对流:通过空气和水等流体进行的热转移。

  • 辐射:通过电磁波释放热能。

“”

02、散热路径

产生的热量通过传导、对流和辐射的方式经由各种路径逸出到大气中。由于我们的主题是“半导体元器件的热设计”,因此在这里将以安装在印刷电路板上的IC为例进行说明。

“”

热源是IC芯片。该热量会传导至封装、引线框架、焊盘和印刷电路板。热量通过对流和辐射从印刷电路板和IC封装表面传递到大气中。可以使用热阻表示如下:

“”

上图右上方的IC截面图中,每个部分的颜色与电路网圆圈的颜色相匹配(例如芯片为红色)。芯片温度TJ通过电路网中所示的热阻达到环境温度TA。

采用表面安装的方式安装在印刷电路板(PCB)上时,红色虚线包围的路径是主要的散热路径。

具体而言,热量从芯片经由键合材料(芯片与背面露出框架之间的粘接剂)传导至背面框架(焊盘),然后通过印刷电路板上的焊料传导至印刷电路板。然后,该热量通过来自印刷基板的对流和辐射传递到大气中(TA)。

其他途径还包括从芯片通过键合线传递到引线框架、再传递到印刷基板来实现对流和辐射的路径,以及从芯片通过封装来实现对流和辐射的路径。

如果知道该路径的热阻和IC的功率损耗,则可以通过热欧姆定律来计算温度差(在这里为TA和TJ之间的差)。

就如本文所讲的,所谓的“热设计”,就是努力减少各处的热阻,即减少从芯片到大气的散热路径的热阻, 最终TJ降低并且可靠性提高。

03、什么是热阻

热阻是表示热量传递难易程度的数值。是任意两点之间的温度差除以两点之间流动的热流量(单位时间内流动的热量)而获得的值。热阻值高意味着热量难以传递,而热阻值低意味着热量易于传递。

“”

热阻的符号为Rth和θ。Rth来源于热阻的英文表达“thermal resistance”。

单位是℃/W(K/W)。

04、热欧姆定律

可以用与电阻几乎相同的思路来考虑热阻,并且可以以与欧姆定律相同的方式来处理热计算的基本公式。

电气
电流 I(A) 电压差 ⊿V(V) 电阻 R(Ω)

热流量 P(W) 温度差 ⊿T(℃) 热阻 Rth(℃/W)

因此,就像可以通过R×I来求出电位差⊿V一样,可以通过Rth×P来求出温度差⊿T。

关键要点:

  • 热阻是表示热量传递难易程度的数值。

  • 热阻的符号为Rth和θ,单位为℃/W(K/W)。

  • 可以用与电阻大致相同的思路来考虑热阻。

本文转载自:罗姆R课堂
免责声明:本文为用户转载的文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行删除(联系邮箱:
cathy@eetrend.com)。

围观 72

电容故障特点及维修

电容损坏引发的故障在电子设备中是最高的,其中尤其以电解电容的损坏最为常见。电容损坏表现为:容量变小;完全失去容量;漏电;短路。

电容在电路中所起的作用不同,引起的故障也各有特点。在工控电路板中,数字电路占绝大多数,电容多用做电源滤波,用做信号耦合和振荡电路的电容较少。用在开关电源中的电解电容如果损坏,则开关电源可能不起振,没有电压输出;或者输出电压滤波不好,电路因电压不稳而发生逻辑混乱,表现为机器工作时好时坏或开不了机,如果电容并在数字电路的电源正负极之间,故障表现同上。

这在电脑主板上表现尤其明显,很多电脑用了几年就出现有时开不了机,有时又可以开机的现象,打开机箱,往往可以看见有电解电容鼓包的现象,如果将电容拆下来量一下容量,发现比实际值要低很多。

电容的寿命与环境温度直接有关,环境温度越高,电容寿命越短。这个规律不但适用电解电容,也适用其它电容。所以在寻找故障电容时应重点检查和热源靠得比较近的电容,如散热片旁及大功率元器件旁的电容,离其越近,损坏的可能性就越大。

曾经修过一台X光探伤仪的电源,用户反映有烟从电源里冒出来,拆开机箱后发现有一只1000uF/350V的大电容有油质一样的东西流出来,拆下来一量容量只有几十uF,还发现只有这只电容与整流桥的散热片离得最近,其它离得远的就完好无损,容量正常。另外有瓷片电容出现短路的情况,也发现电容离发热部件比较近。所以在检修查找时应有所侧重。

有些电容漏电比较严重,用手指触摸时甚至会烫手,这种电容必须更换。

在检修时好时坏的故障时,排除了接触不良的可能性以外,一般大部分就是电容损坏引起的故障了。所以在碰到此类故障时,可以将电容重点检查一下,换掉电容后往往令人惊喜。

电阻损坏的特点与判别

常看见许多初学者在检修电路时在电阻上折腾,又是拆又是焊的,其实修得多了,你只要了解了电阻的损坏特点,就不必大费周章。

电阻是电器设备中数量最多的元件,但不是损坏率最高的元件。电阻损坏以开路最常见,阻值变大较少见,阻值变小十分少见。常见的有碳膜电阻、金属膜电阻、线绕电阻和保险电阻几种。

前两种电阻应用最广,其损坏的特点一是低阻值(100Ω以下)和高阻值(100kΩ以上)的损坏率较高,中间阻值(如几百欧到几十千欧)的极少损坏;二是低阻值电阻损坏时往往是烧焦发黑,很容易发现,而高阻值电阻损坏时很少有痕迹。

线绕电阻一般用作大电流限流,阻值不大。圆柱形线绕电阻烧坏时有的会发黑或表面爆皮、裂纹,有的没有痕迹。水泥电阻是线绕电阻的一种,烧坏时可能会断裂,否则也没有可见痕迹。保险电阻烧坏时有的表面会炸掉一块皮,有的也没有什么痕迹,但绝不会烧焦发黑。根据以上特点,在检查电阻时可有所侧重,快速找出损坏的电阻。

根据以上列出的特点,我们先可以观察一下电路板上低阻值电阻有没有烧黑的痕迹,再根据电阻损坏时绝大多数开路或阻值变大以及高阻值电阻容易损坏的特点,我们就可以用万用表在电路板上先直接量高阻值的电阻两端的阻值,如果量得阻值比标称阻值大,则这个电阻肯定损坏(要注意等阻值显示稳定后才下结论,因为电路中有可能并联电容元件,有一个充放电过程),如果量得阻值比标称阻值小,则一般不用理会它。这样在电路板上每一个电阻都量一遍,即使“错杀”一千,也不会放过一个了。

运算放大器好坏判别

运算放大器好坏的判别对相当多的电子维修者有一定的难度,不只文化程度的关系,在此与大家共同探讨一下,希望对大家有所帮助。

理想运算放大器具有“虚短”和“虚断”的特性,这两个特性对分析线性运用的运放电路十分有用。为了保证线性运用,运放必须在闭环(负反馈)下工作。如果没有负反馈,开环放大下的运放成为一个比较器。如果要判断器件的好坏,先应分清楚器件在电路中是做放大器用还是做比较器用。

根据放大器虚短的原理,就是说如果这个运算放大器工作正常的话,其同向输入端和反向输入端电压必然相等,即使有差别也是mv级的,当然在某些高输入阻抗电路中,万用表的内阻会对电压测试有点影响,但一般也不会超过0.2V,如果有0.5V以上的差别,则放大器必坏无疑!(我是用的FLUKE179万用表)

如果器件是做比较器用,则允许同向输入端和反向输入端不等。同向电压>反向电压,则输出电压接近正的最大值;同向电压<反向电压,则输出电压接近0V或负的最大值(视乎双电源或单电源)。如果检测到电压不符合这个规则,则器件必坏无疑!这样你不必使用代换法,不必拆下电路板上的芯片就可以判断运算放大器的好坏了。

SMT元件测试小窍门

有些贴片元件非常细小,用普通万用表表笔测试检修时很不方便,一是容易造成短路,二是对涂有绝缘涂层的电路板不便接触到元件管脚的金属部分。这里告诉大家一个简便方法,会给检测带来不少方便。

取两枚最小号的缝衣针,将之与万用表笔靠紧,然后取一根多股电缆里的细铜线,用细铜线将表笔和缝衣针绑在一起,再用焊锡焊牢。这样用带有细小针尖的表笔去测那些SMT元件的时候就再无短路之虞,而且针尖可以刺破绝缘涂层,直捣关键部位,再也不必费神去刮那些膜膜了。

公共电源短路检修

电路板维修中,如果碰到公共电源短路的故障往往头大,因为很多器件都共用同一电源,每一个用此电源的器件都有短路的嫌疑,如果板上元件不多,采用“锄大地”的方式终归可以找到短路点,如果元件太多,“锄大地”能不能锄到状况就要靠运气了。在此推荐一比较管用的方法,采用此法,事半功倍,往往能很快找到故障点。

要有一个电压电流皆可调的电源,电压0-30V,电流0-3A,此电源不贵,300元左右。将开路电压调到器件电源电压水平,先将电流调至最小,将此电压加在电路的电源电压点如74系列芯片的5V和0V端,视乎短路程度,慢慢将电流增大,用手摸器件,当摸到某个器件发热明显,这个往往就是损坏的元件,可将之取下进一步测量确认。当然操作时电压一定不能超过器件的工作电压,并且不能接反,否则会烧坏其它好的器件。

橡皮解决大问题

工业控制用到的板卡越来越多,很多板卡采用金手指插入插槽的方式.由于工业现场环境恶劣,多尘、潮湿、多腐蚀气体的环境易使板卡产生接触不良故障,很多朋友可能通过更换板卡的方式解决了问题,但购买板卡的费用非常可观,尤其某些进口设备的板卡。其实大家不妨使用橡皮擦在金手指上反复擦几下,将金手指上的污物清理干净后,再试机,没准就解决了问题!方法简单又实用。

电气故障分析

各种时好时坏电气故障从概率大小来讲大概包括以下几种情况:

接触不良

板卡与插槽接触不良、缆线内部折断时通时不通、线插头及接线端子接触不好、元器件虚焊等皆属此类;

信号受干扰

对数字电路而言,在特定的情况条件下,故障才会呈现,有可能确实是干扰太大影响了控制系统使其出错,也有电路板个别元件参数或整体表现参数出现了变化,使抗干扰能力趋向临界点,从而出现故障;

元器件热稳定性不好

从大量的维修实践来看,其中首推电解电容的热稳定性不好,其次是其它电容、三极管、二极管、IC、电阻等;

电路板上有湿气、尘土等

湿气和积尘会导电,具有电阻效应,而且在热胀冷缩的过程中阻值还会变化,这个电阻值会同其它元件有并联效果,这个效果比较强时就会改变电路参数,使故障发生;

软件也是考虑因素之一

电路中许多参数使用软件来调整,某些参数的裕量调得太低,处于临界范围,当机器运行工况符合软件判定故障的理由时,那么报警就会出现。

声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有,如涉及侵权,请联系小编邮箱 demi@eetrend.com 进行处理。

围观 23

电路保护是电路设计的基本功,其中涉及的元器件有很多种,熟悉并掌握每种不同电路保护元器件的特性十分重要。本文将对常见的电路保护元器件进行介绍和比较

气体放电管(GDT)—— 这是电压驱动型零件。在电路中的电压达到特定水平之前,GDT将处于断路状态。当电压达到特定水平时,GDT中的气体将电离并导电,从而使高压电平接地。高压降低后,气体去离子化,GDT将回到断路状态,直到下一次浪涌。与其他电路保护元件相比,GDT可以吸收超多的瞬增能量。

二极GDT —— 用于线对线或线对地电路。                                                        

三极GDT —— 可同时用于某一部分的线对线或线对地电路。                                 

保险丝 —— 保险丝是由安装在两个电端子之间的金属条或熔断丝元件组成。金属条在电流通过时会发热,当发热到一定程度时,金属条就会熔化并断裂,导致电路断开。此时,需要更换损坏的保险丝以使电路重新工作。保险丝是最便宜的电路保护装置,通常也最易于使用。

断路器 —— 与保险丝相似,断路器能够保护电路免受过电流的影响,但区别在于断路器在断开电路时不会毁坏自身,并且可以重置。

压敏电阻 —— 这是电压驱动型零件。在没有电压通过时,压敏电阻通常具有高电阻。随着电压水平的增加,其阻值会减小。当高压通过压敏电阻并超过其击穿电压时,该零件将迅速降低电阻并将电压钳位至安全水平。此时,该电阻将部分通电并吸收多余能量以保护电路。电压下降后,如果该零件未损坏,就会恢复为高电阻状态,并可正常使用。

来源: 得捷电子DigiKey

围观 18

页面

订阅 RSS - 元器件