judy的博客

PCB钻孔:断钻咀的主要原因及预防措施

judy的头像

钻孔参数的设定是至关重要,钻孔速度太快回是钻咀受力过大而折断,钻孔速度太慢会降低生产效率。因各板料厂商生产的PCB板的板厚、铜厚、板料结构等情况不相同,所以,PCB需根据具体情况去设定。通过计算和测试,选择最合适的钻孔参数。

PCB工程师不得不看:超级实用AD常用快捷键总结

judy的头像

快捷键的实用,极大的提高了大家工作中的效率,因此小编我特意帮大家搜集整理很多关于AD方面的常用快捷键,希望对大家有所帮助。

一、PCB中常用快捷键

R+L 输出PCB中所有网络的布线长度
Ctrl+左键点击对正在布的线完成自动布线连接
M+G 可更改铜的形状;
按P+T在布线状态下,按Shift+A可直接进行蛇线走线
T+R对已布完的线进行蛇线布线
E++M+C点击空白出可迅速找到PCB上想要的元件
Backspace 撤销正在布线的上一步操作
* 切换布线层,可在布线过程中放置过孔
Ctrl+Shift 切换层并放置过孔
F8/E+O+S设置圆心点
M+I 翻转选中的元件
P+T 布线
T+E 补泪滴
P+G 铺铜
S+Y 单层选择线
E+B 选择进行复制

二、总结:

影响PCB电镀填孔工艺的几个基本因素

judy的头像

全球电镀PCB产业产值占电子元件产业总产值的比例迅速增长,是电子元件细分产业中比重最大的产业,占有独特地位,电镀PCB的每年产值为600亿美元。电子产品的体积日趋轻薄短小,通盲孔上直接叠孔是获得高密度互连的设计方法。要做好叠孔,首先应将孔底平坦性做好。典型的平坦孔面的制作方法有好几种,电镀填孔工艺就是其中具有代表性的一种。

电镀填孔工艺除了可以减少额外制程开发的必要性,也与现行的工艺设备兼容,有利于获得良好的可靠性。

电镀填孔有以下几方面的优点 :

(1)有利于设计叠孔(Stacked)和盘上孔(Via.on.Pad);

(2)改善电气性能,有助于高频设计;

(3)有助于散热;

(4)塞孔和电气互连一步完成;

(5)盲孔内用电镀铜填满,可靠性更高,导电性能比导电胶更好。

物理影响参数

需要研究的物理参数有:阳极类型、阴阳极间距、电流密度、搅动、温度、整流器和波形等。

单片机的几个基本概念

judy的头像

1、单片机执行指令

我们来思考一个问题,当我们在编程器中把一条指令写进单片机内部,然后取下单片机,单片机就可以执行这条指令。

那么这条指令一定保存在单片机的某个地方,并且这个地方在单片机掉电后依然可以保持这条指令不会丢失,这是个什么地方呢?

这个地方就是单片机内部的只读存储器即ROM(READ ONLY MEMORY)。

为什么称它为只读存储器呢?刚才我们不是明明把两个数字写进去了吗?原来在89C51中的ROM是一种电可擦除的ROM,称为FLASH ROM,刚才我们是用的编程器,在特殊的条件下由外部设备对ROM进行写的操作,在单片机正常工作条件下,只能从那面读,不能把数据写进去,所以我们还是把它称为ROM。

2、单片机数的本质和物理现象

我们知道,计算机可以进行数学运算,这令我们非常难以理解,它们只是一些电子元器件,怎么可以进行数学运算呢?

电压反馈电路有什么特点?

judy的头像

电压反馈(voltage feedback),简称VFB,应用在模拟电路中,是反馈的一种,若反馈量与输出电压成正比则为电压反馈,与之对应的有电流反馈(CFB)。

对于交流反馈,根据反馈信号在放大电路输出端采样方式的不同进行分类,可以分为电压反馈和电流反馈。若反馈信号是从输出电压采样而得,反馈信号与输出电压成正比,则称为电压反馈;若反馈信号是从输出电流采样而得,反馈信号与输出电流成正比,则称为电流反馈。

在一个模拟电路中,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,一般可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路,此时,若输入回路中仍然存在反馈量,即则为电流反馈;若输入回路中已不存在反馈,即则为电压反馈。

判断电压反馈方法

干货 | 搞电子必懂的继电器知识

judy的头像

继电器是一种当输入量(电、磁、声、光、热)达到一定值时,输出量将发生跳跃式变化的自动控制器件。

一、继电器(relay)的工作原理和特性

当输入量(如电压、电流、温度等)达到规定值时,使被控制的输出电路导通或断开的电器。可分为电气量(如电流、电压、频率、功率等)继电器及非电量(如温度、压力、速度等)继电器两大类。具有动作快、工作稳定、使用寿命长、体积小等优点。广泛应用于电力保护、自动化、运动、遥控、测量和通信等装置中。

继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。

在ON状态下 Mosfet与三极管有何不同之处?

judy的头像

MOSFET是一种在模拟电路和数字电路中都应用的非常广泛的一种场效晶体管。三极管也成为双极型晶体管,他能够控制电流的的流动,将较小的信号放大成为幅值较高的电信号。MOSFET和三极管都有ON状态,那么在处于ON状态时,这两者有什么区别呢?

MOSFET和三极管,在ON状态时,MOSFET通常用Rds,三极管通常用饱和Vce。那么是否存在能够反过来的情况,三极管用饱和Rce,而MOSFET用饱和Vds呢?

三极管ON状态时工作于饱和区,导通电流Ice主要由Ib与Vce决定,由于三极管的基极驱动电流Ib一般不能保持恒定,因而Ice就不能简单的仅由Vce来决定,即不能采用饱和Rce来表示(因Rce会变化)。由于饱和状态下Vce较小,所以三极管一般用饱和Vce表示。

MOS管在ON状态时工作于线性区(相当于三极管的饱和区),与三极管相似,电流Ids由Vgs和Vds决定,但MOS管的驱动电压Vgs一般可保持不变,因而Ids可仅受Vds影响,即在Vgs固定的情况下,导通阻抗Rds基本保持不变,所以MOS管采用Rds方式。

电流可以双向流过MOSFET的D和S,正是MOSFET这个突出的优点,让同步整流中没有DCM的概念,能量可以从输入传递到输出,也可以从输出返还给输入。能实现能量双向流动。

mos管的GS波形振荡怎么消除?

judy的头像

对于咱们电源工程师来讲,我们很多时候都在波形,看输入波形,MOS开关波形,电流波形,输出二极管波形,芯片波形,MOS管的GS波形,我们拿开关GS波形为例来聊一下GS的波形。

我们测死MOS管GS波形时,有时会看到下图中的这种波形,在芯片输出端是非常好的方波输出,但一旦到了MOS管的G极就出问题了,有振荡,这个振荡小的时候还能勉强过关,但是有时候振荡特别大,看着都教人担心会不会重启。

mos管的GS波形振荡怎么消除?

这个波形中的振荡是怎么回事?有没有办法消除?

我们一起来看看

页面

订阅 RSS - judy的博客