MSPM0

近些年, MCU 的产品种类越来越丰富,市场的竞争也日益激烈,性能和成本效益成为了制胜关键。德州仪器凭借其在半导体创新技术上的深厚积累,在 MSPM0 MCU 产品系列中推出了超小型 MSPM0C110x,可用于工业、汽车、电器和个人电子产品等领域的不同应用中,千颗售价低至 1 元。

点击此处观看下方视频

8 位和 16 位 MCU 市场趋势洞察

回顾 8 位和 16 位 MCU 市场的发展历程,尽管 32 位 MCU 在性能上日益占据优势,但 8 位和 16 位 MCU 的总体有效市场并没有显示出下降的迹象。实际上,这些 MCU 在工业、汽车和消费类物联网产品中的需求依然强劲。

传统 MCU 技术面临多重挑战

但在实际设计中,工程师仍面临着性能和成本方面的挑战。大多数现有 8 位和 16 位 MCU 都基于 180nm 等传统工艺节点技术。然而,随着电路和系统设计尺寸越来越小,性能提升的要求越来越迫切,传统的 8 位和 16 位 MCU 已逐渐无法满足市场需求,亟需新技术的注入。

关注到这一市场需求,德州仪器凭借其丰富的嵌入式经验积累,推出了基于创新制造技术和先进工艺节点的 MSPM0C110x 系列。这款 MCU 不仅具有 32 位 Arm® Cortex®-M0+ 内核,更在性能上实现了大幅提升,同时保持了极低的成本。其超小型的设计,使得它在各种空间敏感型应用中具有得天独厚的优势。

MSPM0C 系列重塑低成本高性能新标杆

小尺寸

电子设备向更小型化发展,MSPM0C 系列产品的小尺寸和高集成度使其成为设计工程师的理想选择。MSPM0C110x 的超小型设计,主要体现在其 8 引脚的 WSON 封装上,尺寸仅为 2mm x 2mm,比常见的 8 引脚 SOIC 封装小了 7.35 倍。这种紧凑的尺寸设计,能够在有限的布板空间中能够发挥最大的效用。此外,MSPM0C MCU 还具有高精度内部振荡器,无需外部晶体,进一步简化了电路设计,降低了成本。

1.png

图 1. SOIC 和 WSON 之间的尺寸比较

高性能

在性能方面,MSPM0C110x 同样表现出色。它基于增强型 Arm® Cortex®-M0+ 内核平台,工作频率高达 24MHz,提供高达 16KB 的嵌入式闪存和 1KB 的 SRAM。同时,它还集成了 12 位 1.5Msps ADC,可以准确监测系统的电池电源电压,为电动牙刷、剃须刀等应用中提供便利。

兼容性

更值得一提的是,MSPM0C MCU 系列还具有良好的引脚对引脚兼容性。设计人员可以使用我们的简单迁移工具,通过复制和粘贴头文件并转换基本外设,将应用代码从现有代码移植到 MSP 平台。借助这种硬件和软件兼容性,可加快您的开发速度并缩短开发时间。

来源:德州仪器

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com

围观 23

汽车已经成为现代人出行的必备工具,随着科技的进步,它不仅提供了便捷的交通方式,还逐渐成为未来生活的第三空间。驾驶者和乘客对汽车的舒适性和功能安全性也提出了更高的要求,这也推进了车身控制领域 MCU 的智能化发展。

为了满足这一需求,德州仪器进一步拓展了 MSPM0 家族的应用布局,推出了全新的车规级通用 MCU。该系列面向车身控制应用,实现从工业级到车规级的拓展。德州仪器 MSP 微控制器业务副总裁兼总经理 Vinay Agarwal 也就此次 MCU 车规级芯片的发布接受了媒体访问。

1.jpg

符合车规级 AEC-Q100 标准,高性能、低功耗的出色结合:

MSPM0-Q1是基于 Arm® Cortex®,符合汽车标准 (AEC-Q100) MCU,旨在满足车身电子产品应用的系统要求。这些 MCU 以极低的成本提供了更小的封装、易于使用的标准化软件、高性能低功耗外设和全方位引脚对引脚可扩展性。

2.png

谈及此次从工业级到车规级的布局,Vinay认为:德州仪器开发全系列 MSPM0 的产品组合,初衷是希望帮助客户缩短他们的开发时间,把更多的时间花在优化和提高自己的系统方面上。未来,无论是通用的还是需要模拟信号链控制的集成的 MCU,都可以在 德州仪器 的产品组合中找到。Vinay还介绍了 MSPM0-Q1 系列的一些亮点,例如:

  • 可拓展性

MSPM0-Q1 从硬件、软件和模拟集成方面,都提供了高度的兼容性和灵活性。从硬件角度,MSPM0-Q1 采用了引脚对引脚的兼容设计,只要是同一种封装,全系列产品都可以互换,实现硬件的兼容。从软件角度,德州仪器提供了各种参考代码、图形化的编程界面等,方便客户快速开发和调试。从模拟集成方面,MSPM0-Q1 提供了运放、ADC/DAC、比较器等的集成选项,满足不同的模拟信号链控制的需求。

  • 成本和性能的结合

内置故障诊断机制和安全性扩展,帮助客户满足功能安全和故障诊断的要求。

高度集成的高精度模拟外设、CAN-FD  LIN 的通讯接口,减小布板空间并优化系统成本。

提供了从 32M  80M  CPU 频率范围,满足不同的性能和存储需求。

提供了 16 引脚到 64 引脚的多种封装选项,方便客户进行产品迭代和升级。

德州仪器内部集成的信号链 IP 支持内部互联,便于节省外部空间和外部元器件

  • 全系列低功耗 MCU

Vinay 介绍,德州仪器全系列产品都在低功耗模式和唤醒时间方面表现出色。在设计时,客户可以通过使用德州仪器低功耗 MCU 以及高速比较器、高性能定时器等组件来节省大量功耗

助力客户创新,提供更多选择:

TI.com 目前已推出 L、G 系列产品,可覆盖汽车里的多种应用场景,例如 OBC(车载充电器)、座椅加热器、电动尾门、天窗/智能玻璃的开关控制、可旋转显示屏等。此外,德州仪器 还有很多成功应用的案例,像 UWB 钥匙、电动脚踏板等酷炫功能的解决方案。

3.png

Vinay 表示,德州仪器会持续地投入和扩大在汽车上的 MCU 的选择,为客户提供更多的性价比高、性能强的 MCU 方案,帮助客户在汽车上实现更多的智能化和个性化的功能。他还表示,德州仪器会继续优化 MCU,以适应低功耗的汽车应用的需求,同时也会增加 MCU 的模拟信号链的集成,提高 MCU 的竞争力和性能。

德州仪器车规级 MCU 产品的发布,进一步推动了汽车智能化的发展,并满足了车身控制领域对 MCU 不断增长的需求。这些产品具有通用性、可扩展性和低功耗的优势,可以广泛应用于各种汽车应用场景。

采用便捷工具快速开发:

同时,德州仪器也提供了一系列开发工具和图形化编程界面,如,LaunchPad™ 开发套件,以及参考代码、库、图形化的编程界面等软件,都能帮助客户缩短开发时间,提高开发效率。

4.png

未来,德州仪器将继续引领 MCU 领域的技术创新,为汽车行业的持续发展开拓更多可能。

关于德州仪器 (TI)

德州仪器 (TI)(纳斯达克股票代码:TXN)是一家全球性的半导体公司,致力于设计、制造、测试和销售模拟和嵌入式处理芯片,用于工业、汽车、个人电子产品、通信设备和企业系统等市场。我们致力于通过半导体技术让电子产品更经济实用,创造一个更美好的世界。如今,每一代创新都建立在上一代创新的基础之上,使我们的技术变得更小巧、更快速、更可靠、更实惠,从而实现半导体在电子产品领域的广泛应用,这就是工程的进步。这正是我们数十年来乃至现在一直在做的事。欲了解更多信息,请访问公司网站www.ti.com.cn

围观 14

——ONE——

1.0 方案背景

TI M0内核微控制器去年推出评估版芯片和软件,今年上半年推出正式版,支持易于上手的SYSCONFIG初始化代码配置工具,如图1.1所示。

1.png

图1.1 使用SYSCONFIG配置M0L1306外设

最先上市的是入门级的MSPM0L系列及其配套的开发套件LP-MSPM0L1306,也就是俗称的LaunchPad。受TI大学计划部委托,开发了一款基于LP-MSPM0L1306的智能小车,同时具备巡线、避障和直立平衡功能,并可方便的进行扩展。验证了即使是入门级的M0L系列微控制器,也完全可以胜任电赛中相对复杂的应用。如图1.2所示即为TI MSPM0 MCU线下教师培训会(杭州站)培训所使的小车。

2.jpg

3.jpg

图1.2 基于LP-MSPM0L1306的智能小车

但是小车主要使用的是微控制器的数字功能(模拟外设仅用到了ADC),而TI M0系列微控制器的一个主要特色是集成了丰富的模拟外设,如图1.3所示的M0L1306包含有:

(1) GPAMP:普通运放×1

(2) OPAx:程控运放×2

(3) COPM0+DAC8_0:模拟比较器×1+8位DAC×1

(4) ADC:12位ADC×1

4.png

图1.3 MSPM0L1306的模拟外设

如何能够综合性的展示MSPM0微控制器模拟外设的“用途”,成为一个难题。毕竟单独看每一个模拟外设并不是指标有多先进。直到今年电赛的C题“电感电容测量装置”的出现,给了这样一个机会,仅使用一块M0L1306,就能基本实现赛题要求。

——TWO——

2.0 基于M0L1306的单芯片LC测量装置硬件原理

如图2.1所示为基于M0L1306的单芯片LC测量装置的整体原理图,黑色部分是MCU内部的模拟外设,蓝色部分是测量电容加的外部电路,绿色是测量电容加的外部电路。下面分别讲解电容和电感测量电路。

5.png

图2.1 基于M0L1306的单芯片LC测量装置

2.1 电容硬件测量原理

将电容测量电路部分从总原理图中拆分出来,如图2.2所示,测量电容和电感的基本原理都是和基准电阻分压,测量分压波形的幅值和相位。

(1) 外部元件为10kΩ多圈电位器RP和作为分压基准的360kΩ电阻R_ref(实际为1%精度电阻),C?为待测电容。

(2) DAC+OPA1的固定搭配产生1kHz,3.3Vpp,直流偏移1.65V的正弦激励信号,如图2.3红色波形所示。(注:M0L系列MCU的DAC必须经OPAx缓冲后才能对外输出)

(3) 基准电阻R_ref与待测元件C?分压,产生待测相移信号,采用低侧测量,如图2.3蓝色波形所示。

(4) 多圈电位器RP+GPAMP产生1.65V直流偏置信号,如图2.3紫色波形所示。

(5) 由于GPAMP输出的直流偏置的抵消作用,OPA0只放大待测信号中的交流部分(1.65V直流部分不变),得到如图2.3所示的绿色波形。

6.png

图2.2 电容测量硬件原理图

7.png

图2.3 电容测量理论波形图

2.2 电感测量硬件原理

如图2.4左所示,电感测量的外部元件包括一个NPN三极管和一个10欧的电阻。相比电容测量电路,电感测量电路有两个难点,第一个就是1kHz下待测电感(10μH~100μH)阻抗不到1欧姆,所以串联的分压电阻只能取10欧姆,内部DAC+程控运放带不动这么重的负载。


解决的方法就是使用经典的三极管射随电路来扩流。DAC+OPA1产生理论值1kHz,2Vpp,直流偏移1.8V的正弦激励信号。三极管射极实际输出约0.3V~2V幅值的正弦波。如图2.4右所示,用示波器观测实际三极管的基极波形是橙色和射极波形是绿色。

8.png

图2.4 经三极管扩流的正弦激励信号

另一个难点是,如图2.4所示的电路中,电感两端的电压信号是双极性(测电容的时候是单极性的),而现在M0只剩两个单极性运放可以用。

解决方案:使用MSPM0L技术手册(SLAU847C)里的一种特殊差分放大电路,如图2.5所示。V3的输出不是差分信号,但是V3-V2就是差分信号了。这样做的好处是,参数设置合理的情况下,V1、V2、V3全部都是单极性信号(V1信号进运放,V2信号进运放,V3信号进ADC都得是正的,但是V2-V1有正有负就没关系了)。参数怎么设置合理,需要用仿真软件仿真。

9.jpg

图2.5 MSPM0 L-Series 32-MHz 

Microcontrollers技术手册截图

如图2.6所示,使用M0剩余的两个运放构成“差分放大”,用ADC同时对V3和V2采样,就可以实现差分测量效果。改变OPA0的增益就可以实现程控差分放大。特别说明,由于重负载下,V2不能认为是恒定正弦信号,因此需要实时采样(而电容测量电路里可认为是恒定的正弦激励信号)。

10.png

图2.6 完整的电感测量硬件电路

——THREE——

3.0 正交鉴相原理

对于分压法测量阻抗(感抗、容抗、等效串联电阻)来说,本质就是测量出分压后波形的幅值和相位。获取幅值的方法相对容易,ADC采样后积分即可。相位的精确测量则面临一定挑战,仅检测“过零点”来判断相位差肯定是不精确的(只有仿真软件仿真理想正弦波时,可以用来验证原理)。

对分压波形0~180°进行积分并减去直流分量后,可得实部电压Ureal。对分压波形90~270°进行积分并减去直流分量后,可得虚部电压Uimg。根据实部电压和虚部电压的大小和比值来计算幅值和相位,就是正交鉴相法。下面以电容测量计算为例(电感测量计算方法基本一致),从简单到复杂讲解正交鉴相的原理。

3.1 待测元件仅含有电阻分量

如图3.1所示,如果待测元件只有电阻分量,则分压波形UC与激励波形U完全同相位,虚部电压Uimg为0,UC完全由Ureal构成。

11.png

图3.1 待测元件为纯电阻时的波形图和向量图

3.2 待测元件仅含有电容分量

如图3.2所示,如果待测元件只有电容分量,则分压波形UC比激励波形U落后0~90°相位,实部电压Ureal和虚部电压Uimg均不为0。

(1) 实部电压Ureal与U同相位,虚部电压Uimg落后U90°。

(2) 由于待测元件只有电容分量,所以实部电压和虚部电压平方和开根号,就直接是容抗电压UXC。

(3) 结合已知的激励电压U,可求得基准电阻电压UR。

(4) 结合已知的基准电阻阻值R_ref,可求得待测电容值C。

12.png

图3.2 待测元件为纯电容时的波形图和向量图

3.3 待测元件既有电容分量也有等效串联电阻分

如图3.3所示,如果待测元件既有容抗XC又有等效串联电阻ESR,则分压波形UC同样是比激励波形U落后0~90°的相位,实部电压Ureal和虚部电压Uimg均不为0。问题的焦点是怎么求出等效串联电阻电压UESR和容抗电压UXC所占的比例来,也就是要知道向量图中的∠3。

(1) 根据向量图中的直角△ABD,通过Ureal和Uimg的比值,可求出∠1。

(2) 通过Ureal和Uimg的平方和,可求出UC,而激励电压U在轻负载下为已知量。

(3) 根据向量图中的△ACD,通过U、UC和∠1,可求出∠2和UR。

(4) 根据向量图中的△ACE,可得90°-∠1-∠2=∠3,损耗角正切D=tan∠3。

(5) 根据向量图中的△ADE,通过UC和∠3,可求出UESR和UXC。

(6) 通过UXC和UR的比值,以及基准电阻R_ref的值,就可以得出待测C值。

13.png

图3.3 待测元件为含ESR电容时的波形图和向量图

——FOUE——

MSPM0L1306主要软件代码

4.1 激励信号部分

根据如图4.1所示的正弦表,定时改变DAC幅值,生成1kHz正弦波,测量电容和电感用到不同的正弦表。正弦表通过如图4.2所示的Excel公式计算得来。

14.png

图4.1 电容测量和电感测量时使用的正弦表

15.png

图4.2 由EXCEl计算得出正弦表

4.2 信号采样部分

无论是电容测量还是电感测量,ADC均以1MHz频率DMA方式采样1000个数据,但是数据的组成不一样。

4.2.1 电容采样

如图4.3所示,电容测量模式下,1000个数据全是待测电容电压。

16.png

图4.3 测量电容采样示意图

如图4.4所示,可以用CCS中自带的Graph功能取代示波器来调试电路。OPA0实现的自动增益系数为2~32倍,因为基本构架是同相比例放大。这个增益范围实际有点吃力,1nF放大2倍如果量程合适的话,100nF放大32倍还不够,如果再有一个程控运放就更好了(在5.4节会提及这个问题)。

17.png

图4.4 CCS的Graph功能获得的ADC采样波形图

4.2.2 电感采样

如图4.5所示电感测量的时候,V2和V3交替采样,各占500个数据点。由于等效为反相比例放大,所以OPA0自动控制增益系数分别为1,3,7,15,31。

18.png

图4.5 测量电感采样示意图

如图4.6所示,这是用Graph直接观测连续的1000个数据点波形,会有两个正弦波的轮廓。在Graph的属性中,将Index Increment改为2,再修改合适的起始数据地址,就可以将V3和V2的波形分开显示,如图4.7所示。V3交流成分-V2交流成分就是电感两端电压。

19.png

图4.6 V3和V2合并观测的Graph波形

20.png

21.png

图4.7 V3和V2分开观测的Graph波

4.3 元件判别部

当软硬件测量模式不符时,它们和正常情况的波形有很大区别,加上一些特征判据就可以自动切换正确的测量模式。

(1) 如图4.8所示为软件处于L测量模式,而硬件处于C测量模式的采样波形。

(2)如图4.9所示为软件处于C测量模式,而硬件处于L测量模式的采样波形。

22.png


图4.8 软件L测量,硬件C测量时的采样波形

23.png

图4.9 软件C测量,硬件L测量时的采样波形

4.4 向量图计算部分

图3.3所示的向量图计算看起来很简单,其实也一点不难。每次DMA采样完成拿到1000个数据后,利用math.h中的sqrt、atan,acos数学函数硬算即可。

以下计算代码段中,前面的是测量电容时的代码片段,后面的是测量电感时的代码片段,两者仅在第5行中对于Theata_Udac_Uz有正负号的区别。

24.png

4.5 程序校准部分

如图4.10所示,用数字电桥校准待测电容和电感,全部使用串联模型。由于引线电阻/接触电阻对电感Q值测量影响很大,因此待测电感用的是无引线电感,且电桥的四线夹后再加了一个开尔文夹来尽量保持夹持电感力度一致。

25.png

图4.10 数字电桥标定待测元件

整个测量系统存在很多误差,例如基准电阻阻值,实际程控放大器的增益系数、线路寄生电阻/电容/电感等等,因此需要校准。但数据校准的前提是数据是稳定且可重复的,实验证明该测量系统满足校准的前提条件。


(1) 图4.11左,展示的是单次测量时,数据的抖动情况,

(2) 图4.11右,展示的是系统断电,再重新放上同一个待测元件后,数据的抖动情况。

26.png

图4.11 数据的稳定性展示

校准的方法是用Excel进行线性拟合,在单段线性拟合时,精度可基本控制在5%,如果不满意,还以进一步分段线性拟合。

如图4.12所示是第三档增益(实际增益7)校准电感时的数据表,以及拟合出来的校准直线。

27.png

图4.12 EXCEL校准电感

如图4.13所示是第三档增益(实际增益7)校准电感等效串联电阻ESR时的数据表,以及拟合出来的校准直线。

28.png

图4.13 EXCEL校准等效串联电阻

如图4.14所示,利用图4.12和图4.13得出的校准直线系数,填写在对应的case 3处。

29.png

图4.14 校准代码截图

——FIVE——

其他注意事项

5.1 由杜邦线直插的硬件电路

电容测量的时候,(按题目要求的)等效串联电阻在千欧以上,杜邦线直插带来的接触电阻影响不大。如图5.1左所示就是最原始的杜邦线直插电容测量装置,可以看到外部元件只有电位器、基准电阻和待测电容插孔。

如图5.1右所示为原始的电感测量电路,可以看到外部元件只有NPN三极管、基准电阻和待测电感插孔。但是电感测量时等效ESR远小于1欧姆,杜邦线直插精度远远不够,只能实验一下原理。

30.png

图5.1 使用杜邦线直插的电容测量电路和电感测量电路

5.2 由洞洞板焊接硬件电路

如图5.2所示为洞洞板焊接的电感电容测试装置,是完全可行的。注意电感测试回路能焊接就尽量避免接插连接,能螺丝拧就不要直接插拔,并使用开尔文夹来夹持待测电感。

31.png

图5.2 洞洞板焊接的电感电容测试装置

5.3 增加OELD显示屏带来的干扰

如图5.3所示为增加了OLED屏幕接口的打样PCB板,并且升级了更优质的开尔文夹。

32.png

图5.3 带OLED接口的打样PCB板

在引入OLED显示屏后,测试电容时发生了如图5.4所示的干扰,而只要任意时刻拔除OLED,或者不对OLED进行初始化,波形就会如图5.5一样恢复正常。这说明OLED模块内部有开关电源电路,会对测量电路带来干扰。

33.png

图5.4 OLED引入干扰时的波形

34.png

图5.5 拔除OLED干扰消失时的波形

经过分析可知,如图5.6所示的电容测量电路中PA26所接的电位器中点偏置电压点,极易引入电源线耦合干扰,应加微法级电容C进行滤波。滤波后的测量波形如图5.7所示,干扰已完全消失。图5.5和图5.7波形有直流偏差,原因是这是两块电路板,它们的电位器调节值不一样(偏置电位器只需保证波形不削底/削顶,就不会对测量有影响)。

35.png

图5.6 加入电位器中点滤波电容后的电容测量电路

36.png

图5.7 中点电容消除OLED引入干扰的波形


5.4 升级MSPM0G3507微控制器(此节为大会报告后添加)

由于受TI大学计划部委托,一直是开发基于MSPM0L系列微控制器的有关应用,为了考验MSPM0L系列微控制器的极限能力,在做电赛C题时,也没有去更换后续推出的更高性能MSPM0G系列微控制器。

同学们可以自行尝试使用更高性能的MSPM0G3507 LaunchPad来解答电赛C题。主频方面,G系列是80MHz主频,L系列是32MHz主频,本应用中,主频影响不大,只是编程时可能会有些许便利。但使用模拟外设性能指标更好的MSPM0G3507代替MSPM0L1306将会在至少以下两个方面,提高测量装置的性能,如图5.8所示:

(1) G3507包含两个独立12位4MHz同步采样的ADC,无论是提高采样率,还是提高分辨率,都可以很大程度提高测量装置的性能。而L1306仅有1个12位ADC,采样速度也不及G3507。

(2) L1306中的DAC是比较器附带的8位DAC,不仅精度低,而且更不利的是要消耗掉1个宝贵的可编程OPA作为缓冲器才能输出,这样一来就只剩1个可编程OPA进行信号放大。而G3507则是自带缓冲器的独立12位DAC,这样2个可编程OPA级联使用将使得信号增益更加适应量程。

37.png

图5.8 MSPM0G3507微控制器说明书的模拟外设简介


来源:德州仪器TI校园计划

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 241

近几年来,MCU 的产品种类越来越丰富,在功耗、性能、成本、生态、供应链等领域有了更多选择。同时,工业和汽车市场,甚至消费市场数字化、智能化进程的加速,也给通用 MCU 带来新的爆发点。IC Insights 的数据显示,MCU 在 2021 年和 2022 年两年间出货量和平均售价持续增长,超过了 200 亿美元,其中工业和汽车市场增幅最大。

德州仪器的 32 位 Arm®️ Cortex®️ M0+ 通用 MCU MSPM0 正是在此大环境下推出。作为德州仪器首款 Arm®️ Cortex®️ M0+ 的通用 MCU,这款产品是否会给持续火热的 MCU 市场带来新活力呢?

德州仪器 MSP HSM 全球市场经理 Linda Liu 在接受 eeworld 记者采访时,用三句话总结了 MSPM0 的特点:“更多的产品组合,更高性价比以及更简单易用。”

1692668055136549.jpg

更多的产品组合

Linda 表示,尽管 M0+ 已经诞生了十余年,但凭借其低功耗和高性价比的特点,市场需求依然强大,可涵盖从工业到汽车、从消费到医疗的大部分应用。

在通用嵌入式市场中,最重要的就是产品种类要足够丰富,从而覆盖客户的各类开发或升级需求。预计今年 MSPM0 将推出 100 余种产品,涵盖不同的封装、引脚数、温度范围及模拟、通信等外设,同时保持同封装产品的引脚兼容。“MSPM0 在保留低功耗特性的同时,在数字、模拟等方面都支持更多功能,并以灵活组合的方式进行集成。”Linda 表示。

尤其是在模拟集成方面,MSPM0 充分利用了德州仪器在模拟 IP 上丰富的积累。例如,MSPM0 有些产品集成了两个独立 12 位 ADC,有效位高达 11.2,并支持硬件过采至 14 位;采样时,速率最高可达 4 兆。而一般 MCU集成的 12 位 ADC 很难做到这么高的有效位。MSPM0 内部还集成零漂运算放大器以及跨阻放大器,并且放大器具有分时管脚复用功能,因此可以替代更多的外部运放。

而在接口方面,MSPM0 集成了 CAN-FD 控制,更好满足工业或汽车应用的需求。在计算能力方面,尽管 MSPM0 使用了 Arm®️ Cortex®️ M0+ 内核,但其内部还集成了硬件数学加速器 IP,可直接支持除法,开方,以及反三角函数等计算,以提升 MCU 的算力。另外,计时器方面,MSPM0 除了支持通用定时器,还支持包括死区控制,故障检测等高级定时器多路 PWM,从而更好地支持电机控制等应用。在部分应用中,这种集成硬件加速器的方式比 M4 内核等效算力可能还要更高。

由于工业和汽车领域的要求,MSPM0 也额外加强了安全方面的管理,支持 AES,TRNG,安全启动以及 ECC 存储器,从而增强了产品的安全性能。另外,MSPM0 的工作范围高达 125℃,适合拓展至更严苛的工业和汽车环境应用。

更高的性价比

针对嵌入式应用,BOM 成本往往是需要着重评估的,这不光体现在产品本身,更是要放到系统中进行整体考量。

MSPM0 的集成不光全面,而且性能足够优秀到可以替代外置的分立元件,不但增加了客户的可选择范围,更是极大地优化了客户的 BOM 成本。

更简单易用

对于 MCU 来说,开发工具是工程人员重要的考虑点。德州仪器提供全栈开发工具,配合各类 GUI,以及充足的文档和培训教程,可以减少用户的开发成本。

首先,借助 Arm 丰富的生态系统,MSPM0 可以利用 Arm 丰富的第三方平台。同时,德州仪器也在构建一个开放的生态平台,包括中间件、驱动库、操作系统以及电机控制等多种参考设计和参考代码,且所有代码充分考虑了产品兼容性,保护了开发成本。另外,德州仪器发布了 CCS Theia,Theia 是 Eclipse 的云端和桌面平台,它有着更好的开发体验,可显著提高开发效率。在图形化开发工具方面,德州仪器提供了 SysConfig 以及 Analog Configuration 两款 GUI 工具,可以让用户更友好地进行外设配置。

德州仪器也为工程师提供了 MSP Academy 培训平台,提供了各类模块的培训教程,适合各阶段的开发者学习。

更多选项,无限可能

MSPM0 作为德州仪器嵌入式领域发力的一大重点产品线,旨在通过丰富的产品组合,服务更广阔的大众市场,从而进一步扩大德州仪器在 MCU、嵌入式甚至周边模拟产品的市场。

“借助 MSPM0 全新的产品系列和丰富的资源支持,德州仪器展示了其提供可扩展产品组合的承诺,使工程师能够在几乎任何应用中灵活地进行创新。”Linda Liu 说。

来源:德州仪器

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 21
订阅 RSS - MSPM0