M2354

摘要

就在全球行动运算IP大厂Arm推出它的新隔离技术TrsutZon不久,黑客界就顺势推出其针对该架构所发表的攻击,并号称能够绕过TrustZon的保护,姑且不论黑客最终是否能够靠该破解取得任何实质的信息或利益,我们所能够知道的是,黑客所使用的方法,就是一般广为信息安全所知的故障注入攻击方式,由于这种攻击方式具有简单、低成本、设备取得容易等优点,所以广为黑客们所使用,甚至市面上也有专门的套件贩卖。

既然有攻击就会有对应的防护,而防护的方法简单可分为软件防护与硬件防护。针对故障注入的软件防护,需要先分析出可能的弱点,并针对这些弱点,进行对应的软件开发与防护,这对软件工程人员来说,需要相当专业的信息安全知识与技能才能够做到。

而使用具有硬件防护的设备,对错误注入攻击的防护,在软件开发上则相对简单很多,由于MCU在设计时,就已经将错误攻击的防护考虑进硬件的设计当中,相当于产品应用中所需的信息安全专业技术,已经内嵌到硬件里面了,接下来软件工程师所需要的就只是打开它们,就能够很好的防护故障注入攻击,相对而言轻松许多,且最大程度的避免软件疏失而造成安全漏洞。

错误注入攻击的硬件防护

当产品的执行条件,超出了原本预设的规范,将使产品的运行出错,如果能够限缩这样的执行条件出现在特定的时间,且只持续一段极短的时间,便足以能够让产品在执行特定指令的时候出错,而其它指令又能够正常的执行,这便是所谓的错误注入攻击,常见的方式,是通过短暂地超出半导体组件运行规范的电压、频率来进行攻击, 因此就防护而言,只要能够有效地侦测到不正常的电压与频率,就可以实时的进行应对,实时阻断攻击。

为了保证硬件能够随时有效的应对攻击,侦测硬件必须被独立于平常工作的电路之外,拥有自己的供电、频率系统,以避免外来的攻击同时瘫痪掉侦测电路,除此之外,侦测电路也要能够直接控制关键硬件,使其自动进行必要的保护动作,例如清除内存内的秘钥等,以避免因为错误注入产生的软件错误,而无法正常进行被攻击时的关键处置。

“Figure
Figure 1: Tamper侦测来自电压、频率的攻击,并通知CPU与直接触发Key Store保护机制。

电压与频率攻击与处置

M2354在错误注入防护硬件上,涵盖了各种不同的电压与频率攻击方式,并依此设计了应对的方式,列表如下:

“上表中的”默认动作”,可以只是软件介入,也可以是强制的系统重置或是强制的清除所有Key
上表中的”默认动作”,可以只是软件介入,也可以是强制的系统重置或是强制的清除所有Key Store所存储的秘钥。

总结

对于微控制器产品而言,错误注入攻击确实是一个简单、有效又低成本的攻击,这也造成了这种攻击经常被黑客所利用,为了保护产品内的重要信息,对于这种攻击的防护势在必行。然而纯粹以软件的方式来进行防护,除了需要有信息安全专业的工程师外,更必须有一套严谨的检查机制来防止人为的疏漏,相对而言,建构在硬件侦测的防护方式,工程师只要打开所有的硬件防护,设定相应的动作,就可以完整的防止来自于电源与频率的攻击,硬件防护要显得容易得多。

因此,利用M2354的错误注入攻击防护设计,可以让使用者可以更专心的在产品功能的开上,不用为了信息安全的保护,增加太多额外的工作,减少了开发防护机制额外增加的时间与成本。

来源:新唐MCU
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 180

M2354 旁路攻击防护作法与好处

信息安全,除了仰赖密码学算法,也架构在机器本身的防护上,但一般系统芯片在运行时,仍会不经意地透过一些物理特性泄露讯息,这些讯息会透过电压、电流、电磁波等物理现象传播到系统芯片外,攻击者便可以藉由分析这些暴露出来的信息,反向分析出芯片中的秘钥,这种利用密码系统运行中所泄露出来的物理信息,来对系统进行破解的攻击方式,称为旁路攻击。

M2354是新唐科技所研发的一款MCU,用来因应时代对于MCU效能与安全的需要,提供了各种硬件的密码学算法的加速器与多重的信息保护功能,包括了AES、ECC、RSA、HMAC与高质量不可预测的随机数生成器 (TRNG),更具有专门储存秘钥的Key Store,使其在运用于高安全需求的应用中,除具备有极高的效能外,更能有效抵挡攻击者的入侵与信息窃取,无论这攻击是来自于网络或是对MCU本身的攻击。

M2354针对常用的密码学算法AES、ECC与RSA更加入了旁路攻击的防护,防止攻击者从MCU运作中所泄漏的物理信息,反推系统所使用的秘钥。

AES的旁路攻击防护,能够让AES在运算过程中,由电源、接地端泄露的信息量大幅降低,以避免被截取相关信息来分析出其秘钥。

除了AES,M2354也提供非对称加密算法ECC,并也加入了旁路攻击的防护,以增加攻击者分析电源、接地端的信息,来反推秘钥的困难度。

M2354同时也加入了RSA硬件加速器,也内建了旁路攻击的防护,避免秘钥信息在运算中,透过电源或接地端泄露出去。

以RSA为例,如未加入旁路攻击防护,其译码时所使用的秘钥与其译码时的电流波形,会有高度的相关性,如下图所示:

“”

由上图可以看出,不同的三把RSA秘钥,其解碼时的电流波形有显著的不同,由此可见,RSA运行时的电流波形中,确实明显蕴藏的跟秘钥相关信息,这让攻击者能够轻易地透过分析RSA运作时的电流,反向分析出所使用的秘钥。

那么有效的旁路攻击防护,就必须能够隐藏RSA在运行中,由电流泄漏出来的秘钥讯息,由下图可以看出,在M2354中,打开RSA的旁路攻击防护功能后,不同秘钥之间的不同处,并无法明显的由RSA运行时的电流信息中分辨出来,由此可见,打开M2354的旁路攻击防护功能之后,能够有效的抑制秘钥信息,以操作电流的方式泄漏出去。

“”

信息安全除了仰赖密码学算法的强度,对系统本身能否有效的防护相关秘钥被窃取也极其重要。旁路攻击是一种常见的对系统秘钥窃取的攻击方式,因此其防护于完整的信息安全也是很重要一环,M2354的AES、RSA与ECC密码学算法,除了提供硬件的加速器,提供高效能的数据加密外,也各自提供旁路攻击的防护,除了保护网络传输数据的安全,也保护了针对MCU本体的攻击,真正做到了完整的信息安全。

本文转载自:新唐MCU
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 73
订阅 RSS - M2354