GaN

NCP51820 是一款 650 V、高速、半桥驱动器,能够以高达 200 V/ns 的 dV/dt 速率驱动氮化镓(以下简称“GaN”)功率开关。之前我们简单介绍过氮化镓GaN驱动器的PCB设计策略概要(点击查看),本文将为大家重点说明利用 NCP51820 设计高性能 GaN 半桥栅极驱动电路必须考虑的 PCB 设计注意事项。

1.png

本设计文档其余部分引用的布线示例将使用含有源极开尔文连接引脚的 GaNFET 封装。

VDD 电容

VDD 引脚应有两个尽可能靠近 VDD 引脚放置的陶瓷电容。如图 7 所示,较低值的高频旁路电容(通常为 0.1 μF)应与第二个并联电容(1 μF)一起放在最靠近 VDD 引脚的位置。

               2.png

图1. NCP51820 VDD 电容布局和布线

所有走线须尽可能短而直。可以使用过孔,因为 VDD 电流相对较低。SGND 返回平面对于其屏蔽特性以及让所有信号侧接地回路保持相同电位很有好处,建议使用。SGND 平面位于第 2 层,使其靠近信号侧元器件和 NCP51820。所有信号侧元器件都放在 SGND 平面上,并通过过孔连接。VDD 引脚和 VDD 电容之间应建立直接连接,最好使用过孔作为 SGND 平面的返回连接。

如图1所示,两个 VDD 电容的接地连接并在一起,并通过单个过孔连接到 SGND 平面。如果可能,最好使用不间断的实心 SGND 接地平面,以免形成接地环路。建议将“安静”的 SGND 平面延伸到 NCP51820 下方,以帮助屏蔽驱动器 IC,使其不受噪声影响。注意在图1中,SGND 平面没有延伸到 NCP51820 栅极驱动器输出引脚下方。这是有意为之,目的是避免噪声从栅极驱动 di/dt 峰值拉电流和灌电流耦合到 SGND 平面中。

VBST 电容和二极管、VDDH 和 VDDL 旁路电容

VBST 电容应尽可能靠近 VBST 引脚放置。VBST 电容返回引脚应连接到 GaNFET 的驱动器 SW 引脚、VDDH 返回引脚和源极开尔文引脚。每个连接都是通过过孔接到 HS 栅极返回平面,如图2所示。务必注意,不应从功率级开关节点接回到 NCP51820。请勿将 VBST 电容连接到功率级开关节点。“开关节点”的唯一连接是通过 HS GaNFET 源极开尔文引脚。

HS 栅极返回平面的设计应注意,不得与功率级开关节点发生重叠或相互作用。同样,LS 栅极返回平面的设计应注意,不得与 LS GaNFET 电源地发生重叠或相互作用。请勿将 SGND 平面放在 VBST 二极管或 VBST 电容下方,因为 VBST 二极管的阴极上存在高 dV/dt,它可能会将噪声注入 SGND 平面。

3.png

图2. NCP51820 VBST 电容和二极管、VDDH 和 VDDL 电容

VDDH 电容应尽可能靠近 VDDH 引脚放置。如图2所示,VDDH 电容返回引脚应通过过孔连接到 HS 栅极返回平面(与 VBST 电容共用一个双过孔连接)。

VDDL 电容应尽可能靠近 VDDL 引脚放置。如图2所示,VDDL 电容返回引脚应通过过孔连接到 LS 栅极返回平面。VDDL 电容返回引脚必须连接到驱动器上的 PGND 引脚。VDDL 电容返回引脚通过过孔连接到 LS 栅极返回平面,该平面也通过过孔连接到驱动器 PGND 引脚。

由于栅极驱动电流峰值很高,并且为了降低过孔寄生电感,VBST、VDDH 和 VDDL 需要多个过孔。在此示例中,每个 GaNFET 栅极返回连接使用四个过孔。这是一个合理的折衷考虑,一方面能在 NCP51820 栅极驱动器返回引脚与 GaNFET 返回引脚之间获得低阻抗连接,另一方面能保持实心返回平面和良好的屏蔽完整性。如果可能,最好使用导电材料填充的过孔,因为其相关电感更低。

栅极驱动布线

当 NCP51820 向 HS GaNFET 栅极提供电流时,该栅极电流来自 VDDH 调节器旁路电容中储存的电荷。如图3所示,拉电流流经 HO 驱动器源极阻抗和栅源电阻,进入 GaNFET 栅极。然后,电流从 GaNFET 源极开尔文引脚返回,又回到 VDDH 旁路电容。

4.png

图3. 高压侧栅极驱动拉电流

当 NCP51820 从 HS GaNFET 吸收电流时,该电流来自栅源电容中储存的能量。如图4所示,灌电流从 HS GaNFET 栅极流出,经过栅极灌电流电阻、HO SINK 驱动器阻抗和 SW 引脚,回到 GaNFET 源极开尔文引脚。

5.png

图4. 高压侧栅极驱动灌电流

当 NCP51820 向 LS GaNFET 栅极提供电流时,该栅极电流来自 VDDL 调节器旁路电容中储存的电荷。如图5所示,拉电流流经 LO 驱动器源极阻抗和栅源电阻,进入 GaNFET 栅极。然后,电流从 GaNFET 源极开尔文引脚返回,又回到 VDDL 旁路电容。

6.png

图5. 低压侧栅极驱动拉电流

当 NCP51820 从 LS GaNFET 吸收电流时,该电流来自栅源电容中储存的能量。如图6所示,灌电流从 LS GaNFET 栅极流出,经过栅极灌电流电阻、LO SINK 驱动器阻抗和 PGND 引脚,回到 GaNFET 源极开尔文引脚。

7.png

图6. 低压侧栅极驱动灌电流

GaNFET 能以高开关频率工作,漏源切换期间会出现高 dV/dt(100 V/ns 及更高)。GaN 的栅源导通阈值较低 (<2 V),因此栅极驱动拉电流和灌电流路径必须尽可能保持短而直,以减轻走线寄生电感的不良影响。栅极环路中的过大寄生电感可能导致超过栅源阈值电压的栅极振荡或高频振铃。栅极驱动和返回路径中的过孔只有在绝对必要时才应使用。最好使用导电材料填充的过孔,因为每个这种过孔的电感要小得多。在栅极电阻和相关布线下方使用载流返回平面,以在拉电流和灌电流路径正下方提供一个返回路径,有助于减少环路电感。

NCP51820 高压侧和低压侧驱动在内部相互隔离。对于高压端,SW 引脚必须与功率开关节点隔离,以防止开关噪声注入栅极驱动路径,并且它只能连接到高压侧 GaNFET 上的 SK 引脚。源极开尔文引脚和电源引脚之间的开尔文连接是 NCP51820 SW 引脚和功率级开关节点之间的唯一电气连接,如图3和图4所示。同样,低压侧栅极驱动的布线应使 NCP51820 PGND 引脚与功率级 PGND 隔离,并且只能连接到低压侧 GaNFET 的 SK。设计目标是避免电源 PGND 噪声注入低压侧栅极驱动路径。在低压侧 GaNFET 内部,SK 引脚和电源引脚之间存在开尔文连接,它是 NCP51820 PGND 和电源 PGND 之间的实际连接,如图5和图6所示。

在设计允许的范围内,HS 和 LS 栅极走线的长度应尽可能相等。这有助于确保两个 GaNFET 具有相似的栅极驱动阻抗。高压侧和低压侧 GaNFET 交错对齐具有双重作用:一是使得栅极驱动布线接近对称且等距,二是允许使用更大、更高电流的功率开关节点铜触点。

最好将 HS 和 LS 返回平面分配至第 2 层,并将它们直接放置在栅极驱动电阻和走线下方,这样有助于减少栅极驱动环路电感。对于高压侧 GaNFET,由于 VDDH 旁路电容返回引脚和 NCP51820 SW 引脚被 HO 拉电流和 HO 灌电流走线分开,因此可以使用无填充的过孔通过 HS 栅极返回平面连接到 GaNFET 的源极开尔文引脚。建议使用多个过孔以帮助减少过孔电感。请注意,栅极驱动电流路径与功率开关节点电流路径隔离,尽可能避免主电流路径中的噪声注入栅极驱动电流路径。

对于低压侧 GaNFET,由于 VDDL 旁路电容返回引脚和 NCP51820 PGND 引脚被 LO 拉电流和 LO 灌电流走线分开,因此可以使用无填充的过孔通过 LS 栅极返回平面连接到 GaNFET 的源极开尔文引脚。建议使用多个过孔以帮助减少过孔寄生电感。请注意,栅极驱动电流路径与电源 PGND 电流路径隔离,尽可能避免主电流路径中的噪声注入栅极驱动电流路径。

信号接地 (SGND) 和电源接地 (PGND)

SGND 是所有内部控制逻辑和数字输入接地。在内部,SGND 和 PGND 引脚相互隔离。PGND 用作低压侧栅极驱动和返回基准。

对于半桥电源拓扑或任何使用电流检测变压器的应用,NCP51820 SGND 和 PGND 应在 PCB 上连接在一起。在此类应用中,建议在 PCB 上通过一条低阻抗短走线将 SGND 和 PGND 引脚连接在一起,并且让它们尽可能靠近 NCP51820。NCP51820 正下方是建立 SGND 至 PGND 连接的理想位置,如图7所示。

8.png

图7. PGND 至 SGND,0 Ω 单点连接

对于低功耗应用,例如有源箝位反激式或正激式转换器,通常会在低压侧 GaN FET 源极支路中使用一个电流检测电阻 RCS。在此类应用中,NCP51820 PGND 和 SGND 引脚不得在 PCB 上连接,因为 RCS 会通过此连接短路。NCP51820 低压侧驱动电路能够承受 -3.5 V 至 +3.5 V 的共模电压。大多数电流检测电压信号小于 1 V,因此低压侧驱动级很容易“浮动”到电流检测所产生的电压 VRCS 以上。如图8所示,整个低压侧栅极驱动浮动到 VRCS 以上。这一点很重要,因为它确保栅极驱动幅度不会有损失,因此完整的 VDDL 电压会出现在低压侧 GaN FET 栅源端子。

按照上文所述布置电路时,连接到 NCP51820 HIN 和 LIN 的控制器 HO/LO 路径必须返回到控制器 GND 以形成完整电路。因此,NCP51820 SGND 和控制器 GND 必须相连。这是通过使用过孔将 NCP51820 SGND 和控制器 GND 连接到 SGND 平面来实现的,如图 14 所示。SGND 平面仅用于信号和信号侧 VDD 返回,也会充当信号的屏蔽层。VRCS 返回引脚还必须连接到控制器 GND,这应该使用单条低阻抗走线来完成,该走线应尽可能靠近 VRCS 走线(或位于其下方)。这会将功率级 PGND 单点连接到 SGND,并将功率级 PGND 上的高 dV/dt 和 di/dt 与 SGND 平面隔离开来。

9.png

图8. LS 栅极返回隔离和 VRCS 连接

开关性能验证

在利用 NCP51820 驱动 GaNFET 的半桥功率级布局中使用了本文介绍的 PCB 设计技术。

10.png

图9. 650 V,18 A,HEMT,GaNFET,350 V,10 APK

图9显示了驱动两个 650 V、18 A、90 mΩ GaNFET 的稳态波形。通道 1(黄色)是高压侧栅源电压,通道 2(红色)是低压侧栅源电压,通道 3(蓝色)是开关节点电压(低压侧 GaN VDS),通道 4(绿色)是电感电流。高压侧栅源电压(通道 1,黄色)显示存在轻微过冲和欠冲,这是使用高压探针测量低压浮动信号(在栅极和功率开关节点之间测量)的附带结果。通道 2(红色)显示了栅源电压的“更真实”测量结果,其中低压侧 GaNFET 栅源电压在栅极和 PGND 之间测得。可以看到,栅极驱动边沿非常锐利且干净。同样,开关节点电压(通道 3,蓝色)没有振铃、过冲或欠冲。

11.png

图10. 600 V,26 A,HEMT,GIT,GaNFET,dV/dt = 75 V/ns,320 V,20 APK

图10所示波形是驱动两个 HEMT、GIT、600 V、26 A、56 mΩ GaNFET 的结果,其电流能力比图9中使用的器件要高。要实现高 dV/dt,需要相当大的漏极电流 ID。例如,所示测量是在 ID = 20 APK 下进行的,导致实测 VDS dV/dt = 75 V/ns。三角形峰值电感电流显示为纯直流,这是进行此测量所需的时基 (2 ns/div) 造成的。VSW 波形的 100 V 欠冲是用于显示高 dV/dt 的测量技术的结果,在开关节点上并不真正存在。

在高电压、高频率 PCB 设计中,为了成功运用宽禁带半导体,需要更好地了解寄生电感和电容的负面影响。透彻理解电气返回平面、屏蔽、电流分离、隔离和精心布线的重要性,对于充分发挥 GaN 技术的性能优势至关重要。本文重点说明在利用 NCP51820 驱动高速电源拓扑中使用的 GaN 功率开关设计中,实现成功设计必须采用的重要 PCB 设计准则。这些技术已通过实测波形得到了验证,表明其能够获得出色的结果。

来源:安森美

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 54

NCP51820 是一款 650 V、高速、半桥驱动器,能够以高达 200 V/ns 的 dV/dt 速率驱动氮化镓(以下简称“GaN”) 功率开关。只有合理设计能够支持这种功率开关转换的印刷电路板 (PCB) ,才能实现实现高电压、高频率、快速dV/dt边沿速率开关的全部性能优势。本文将简单介绍NCP51820及利用 NCP51820 设计高性能 GaN 半桥栅极驱动电路的 PCB 设计要点。

NCP51820 是一款全功能专用驱动器,为充分发挥高电子迁移率晶体管 (HEMT) GaNFET 的开关性能而设计。与击穿电压额定值相似的硅器件相比,制造 GaNFET 所使用的芯片尺寸更小。因此,哪怕与同类最佳的硅 MOSFET 相比,GaNFET 的栅极电荷、输出电容和动态导通电阻也大大降低。此外,GaNFET 没有 PN结,因此漏极-源极上没有本征寄生体二极管,也就没有与第三象限操作相关的反向恢复电荷。

GaNFET 非常适用于离线半桥功率拓扑、无桥 PFC 和单端有源箝位拓扑。这些功率级常常采用零电压开关 (ZVS),但也可以在硬开关条件下采用大约 400V 的电压工作。所有这些改进使得 GaNFET 能够以 MHz 范围或接近该范围的频率开关,漏源边沿速率高达 100V/ns。能否实现基于 GaN 的功率级的最优性能,在很大程度上取决于设计人员对寄生电路元件(如封装电感、PCB 走线电感、变压器电容)以及元器件选择和布局的理解。虽然硅 MOSFET 功率系统中也存在这些寄生元件,但在 GaN 功率解决方案中,当受到其中存在的高 dV/dt 和 di/dt 激励时,会有更明显的响应,因此会产生问题。

NCP51820 的 MLP 无引线功率封装(图 3)以及行业中的各种无引线 GaNFET 功率封装(图 1 和图 2),体现了为充分降低寄生电感所作的设计努力。同样,必须特别注意 PCB 设计和元器件布局。为了充分发挥利用 NCP51820 驱动高速半桥功率拓扑中使用的 GaN 功率开关的优势,有一些重要的 PCB 设计因素需要考虑,本白皮书将重点讨论其中的一些重要注意事项。

HEMT GaN 和 NCP51820 封装说明

大多数 GaNFET 封装包含一个专用源极开尔文返回引脚,如图 1 中的“SK”所示,其作用只是为了将栅极驱动返回电流送回 NCP51820。较高电流的漏源引脚通过多条焊线焊接到多个焊盘,不过为了简明起见,图 1 中的简化示意图仅显示了一条焊线连接。NCP51820 输出和 GaNFET 栅源开尔文引脚之间的接口必须是直接单点连接,该接口特别重要,如含有源极开尔文引脚的 GaNFET 部分所述。

但是,并非所有 GaNFET 都包含一个专用源极开尔文返回引脚,例如图 2 所示的示例。对于不含源极开尔文返回引脚的 GaNFET,为 PCB 设计中的栅极驱动部分布线时必须特别注意。对于半桥功率级的开关节点连接,高压侧 GaNFET 的源极直接连接到低压侧 GaNFET 的漏极,构成一个承载高 di/dt 负载电流的高 dV/dt 节点。不建议直接使用此高压开关节点的栅极驱动返回引脚,如不含源极开尔文引脚的 GaNFET 部分所述。

1.png

图1. 含有源极开尔文返回引脚的典型 GaN

2.png

图2. 不含源极开尔文返回引脚的典型 GaN

NCP51820 采用 4x4 mm 无引线封装,所有逻辑电平输入和编程功能都设置在 IC 右侧,与策略性设置在 IC 其余三侧的电源功能分开。基于设计策略安置引脚,以便必要时提供高压隔离。以下 PCB 布局部分说明,将充分展现 NCP51820 引脚分配的优势。

3.png

图3. NCP51820 GaN 驱动器引脚分配

PCB 设计策略概要

使用 GaNFET 开始 PCB 设计时,最好根据优先级考虑整个布局,如下所列。

1. 必须采用多层PCB设计,并且按照本文所述适当使用接地/返回平面。高频率、高电压、高dV/dt和高di/dt都要求采用多层PCB设计方法。为了实现基于GaN的功率级的全部优势,接地平面必须采取适当的布线或设计,而廉价的单层PCB设计无法做到。

2. 开始时,首先将对噪声最敏感的元器件安置在 NCP51820 附近。VDD、VDDH 和 VDDL 旁路电容以及 VBST 电容、电阻和二极管应尽可能靠近各自的引脚。

3. 将 DT 电阻直接放在 DT 和 SGND 引脚之间。

4. HO和LO、拉电流和灌电流栅极驱动电阻应尽可能靠近 GaNFET。

5. 将 NCP51820 和关联的元器件移到尽可能靠近 GaNFET 拉电流和灌电流电阻的位置。

6. 如果可能,安置 GaNFET 时使 HO 和 LO 栅极驱动长度尽可能匹配。为了避免高电流和高 dV/dt 流经过孔,两个 GaNFET 最好和 NCP51820 位于 PCB 的同一面。

7. 应将 HO 和 LO 栅极驱动视为两个独立的、相互电隔离的栅极驱动电路。因此,HO 和 LO 各自都需要专用铜触点 (copper land) 返回平面,这些平面在第 2 层上,位于第 1 层栅极驱动布线正下方。

电源环路、开关节点、栅极驱动环路的正确布线以及使用平面,对于顺利完成 GaN PCB 设计至关重要。这部分内容如有需求,后续可能会推送新的文章配合插图对每一项加以说明。对于栅极驱动器,正确的布线和噪声隔离将有助于减少额外的寄生环路电感、噪声注入、振铃、栅极振荡和意外导通。目的是设计一个精心考虑了适当接地,同时让受控电流以最小环路距离流经直接通路连接的高频电源 PCB。

元器件布局和布线

图 4 突出显示了 NCP51820 周围的关键元器件布局以及与 HS 和 LS GaNFET 的接口。

4.png

图4. NCP51820 元器件布局

含有源极开尔文引脚的GaNFET

许多 GaNFET 封装包括一个专用源极开尔文引脚,用于将栅极驱动返回电流与功率开关节点(高压侧)或电源地(低压侧)出现的较高电流和电压电平隔离。对于具有专用源极开尔文引脚的 GaNFET,栅极驱动布线相当简单。推荐 PCB 布线设计示例如图 5 所示,可以看到高压侧 GaNFET 栅极驱动返回电流与功率开关节点电流有效分隔。

5.png


图5. 源极开尔文 GaNFET 布线

不含源极开尔文引脚的GaNFET

有些 GaNFET 封装不含专用源极开尔文引脚,还必须要仔细考虑,将栅极驱动返回电流与功率开关节点(高压侧)或电源地(低压侧)出现的较高电流和电压电平隔离。对于没有专用源极开尔文引脚的 GaNFET,应从 GaNFET 源极接出一段额外的铜蚀刻线,其唯一作用是将栅极驱动返回电流送回 NCP51820。尽管不如专用开尔文引脚连接那么有效,但这种布线技术仍然可以在栅极驱动电流和功率开关节点之间实现可接受程度的分离。推荐 PCB 布线设计示例如图 6 所示,可以看到高压侧 GaNFET 栅极驱动返回电流与功率开关节点电流有效分隔。无论何种类型的 GaNFET 封装,其设计目标都是避免 NCP51820 和支持电路接触到流过功率级的潜在破坏性开关电压和电流。

6.png

图6. 无源极开尔文引脚的 GaNFET 布线

来源:安森美

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 96

意法半导体的 STDRIVEG600半桥栅极驱动器输出电流大,高低边输出信号传播延迟相同,都是45ns,能够驱动 GaN 增强型 FET 高频开关。

“意法半导体单片GaN栅极驱动器加速工业和家庭自动化并提高灵活性和集成度"

STDRIVEG600 的驱动电源电压高达 20V,还适用于驱动 N 沟道硅基 MOSFET管,在驱动 GaN 器件时,可以灵活地施加 6V 栅极-源极电压 (VGS),确保导通电阻 Rds(on)保持在较低水平。此外,驱动器还集成一个自举电路,可大限度降低物料清单成本,简化电路板布局。自举电路使用同步整流 MOSFET开关管,使自举电压达到VCC逻辑电源电压值,从而让驱动器只使用一个电源,而无需低压降稳压器 (LDO)。

STDRIVEG600的 dV/dt为±200V/ns,确保栅极控制在恶劣的电气环境中具有较高的可靠性。逻辑输入兼容低至 3.3V 的 CMOS/TTL信号,方便连接主微控制器或 DSP处理器。高边电路耐受电压高达 600V,可用于高压总线高达 500V 的应用领域。

驱动器的输出灌电流/拉电流为5.5A/6A,并提供独立的导通和关断引脚,让设计人员可以选择适合的栅极控制方式。此外,高低边电路都支持与功率开关源极相连的开尔文连接方法,以增强控制性能。低边驱动器的专用接地和电源电压引脚可实现开尔文连接,确保开关操作稳定,并允许使用分流电阻器检测电流,而无需额外的隔离或输入滤波电路。

驱动器内置完备的安全保护功能,其中,高低边驱动欠压锁定 (UVLO)可以防止功率开关管在低效率或危险工况下运行;互锁保护可以避免开关管交叉导通。其他保护功能包括过热保护、 省电关闭功能专用引脚。

STDRIVEG600 适用于高压 PFC、DC/DC 和 DC/AC 变换器、开关电源、UPS 电源系统、太阳能发电,以及家用电器、工厂自动化和工业驱动设备的电机驱动控制等应用。

驱动器有两款配套开发板,帮助设计人员快速启动新项目,其中,EVSTDRIVEG600DG 板载一个 150mΩ 650V GaN HEMT晶体管,该晶体管采用 5mm x 6mm PowerFLAT 封装,带有Kelvin驱动源引脚;EVSTDRIVEG600DM开发板配备一个STL33N60DM2 内置快速恢复二极管的MDmesh 115mΩ 600V硅基MOSFET功率开关,该晶体管采用带有Kelvin驱动源引脚的8mm x 8mm PowerFLAT封装或者 DPAK 封装。

关于意法半导体

意法半导体拥有46,000名半导体技术的创造者和创新者,掌握半导体供应链和先进的制造设备。作为一家独立的半导体设备制造商,意法半导体与十万余客户、数千名合作伙伴一起研发产品和解决方案,共同构建生态系统,帮助他们更好地应对各种挑战和新机遇,满足世界对可持续发展的更高需求。意法半导体的技术让人们的出行更智能,电力和能源管理更高效,物联网和5G技术应用更广泛。详情请浏览意法半导体公司网站:www.st.com

围观 24

• 新系列产品整合功率氮化镓(GaN)晶体管和智能电路,赋能尺寸更小、集成度更高的汽车系统解决方案,拥抱电动汽车时代的到来

• STi2GaN车规解决方案包括车载充电器、自动驾驶激光雷达、双向直流-直流 (DC-DC)变换器、D类放大器和电源变换系统

意法半导体(STMicroelectronics)发布了STi2GaN系列智能集成氮化镓(GaN)解决方案。STi2GaN是一款在市场上独一无二的创新产品,在紧凑的高性能解决方案内整合功率级和智能电路,以满足汽车行业在电动化大趋势下的需求。

“意法半导体发布高性能车规级GaN产品系列”

基于意法半导体丰富的汽车应用研发经验、在智能功率技术、宽带隙半导体材料和封装技术领域的领先优势和创新成果,STi2GaN系列采用GaN技术单片整合功率级以及驱动和保护电路,并通过系统级封装(SiP)解决方案增加了数据处理和控制电路,满足市场对特殊用途专用芯片的需求。STi2GaN解决方案采用意法半导体的新型无引线封装技术,提高了芯片的稳定性、可靠性和性能。

意法半导体产品部门副总裁、低压和STi2GaN解决方案事业部总经理Alfio Russo表示: “ STi2GaN延续了ST长期以来在复合材料和智能功率产品创新方面的成功经验,主要应用包括汽车以及需要高密度、高可靠性和高功率的电源。率先推出的STi2GaN解决方案组合适用于车载充电器、自动驾驶激光雷达(LiDAR)、双向直流-直流(DC-DC)转换器、D类放大器和电源变换系统。新系列产品旨在利用GaN技术的高功率密度和高能效,为市场提供一系列独一无二的可扩展、紧凑、高性能的100V和650V产品。”

意法半导体已经与主要合作伙伴建立密切合作关系,详情联系当地ST销售办事处或访问ST.com。

关于意法半导体

意法半导体拥有46,000名半导体技术的创造者和创新者,掌握半导体供应链和最先进的制造设备。作为一家独立的半导体设备制造商,意法半导体与十万余客户、数千名合作伙伴一起研发产品和解决方案,共同构建生态系统,帮助他们更好地应对各种挑战和新机遇,满足世界对可持续发展的更高需求。意法半导体的技术让人们的出行更智能,电力和能源管理更高效,物联网和5G技术应用更广泛。详情请浏览意法半导体公司网站:www.st.com

围观 25

与碳化硅 (SiC)FET 和硅基FET 相比,氮化镓 (GaN) 场效应晶体管 (FET) 可显著降低开关损耗和提高功率密度。这些特性对于数字电源转换器等高开关频率应用大有裨益,可帮助减小磁性元件的尺寸。

电力电子行业的设计人员需要采用新的技术和方法来提高GaN 系统的性能,在利用GaN 技术开发现代电源转换系统时,C2000™ 实时微控制器 (MCU) 可帮助应对各种设计挑战。

C2000™ 实时MCU 的优点

C2000™ MCU 等数字控制器具有出色的适用性,适合各种复杂的拓扑和控制算法,例如零电压开关、零电流开关或采用混合磁滞控制的电感器-电感器-电容器 (LLC) 谐振直流/直流电源。

C2000™ MCU 可提供以下优势:

· 复杂的时间关键型计算处理。C2000™ MCU 拥有高级指令集,可显著减少复杂数学计算所需的周期数。计算时间减少后,可以在不增加MCU 工作频率的情况下提高控制环路频率。

· 精确控制。C2000™ MCU 中的高分辨率脉宽调制器 (PWM) 可提供 150ps的分辨率,而且内置的模拟比较器和可配置逻辑块 (CLB) 有助于安全处理出现的各种错误情况。

· 软件和外设可扩展性。随着系统要求的变化,C2000™ 平台支持向上或向下扩展实时MCU 功能,同时保持软件投入,从而减少软件投入加快产品上市速度。例如, TMS320F280029C 等低成本C2000™ MCU 可在小型服务器电源中实现实时处理和控制;而TMS320F28379D 是高频率多相系统中的常用器件。但TMS320F28379D 保持了和TMS320F280029代码的兼容性。

使用C2000™ MCU 应对GaN 开关挑战

如前所述,实现更高的开关频率可减小开关转换器中磁性元件的尺寸,但同时这会带来许多控制方面的挑战。例如,在图腾柱功率因数校正 (Totem-pole PFC) 拓扑中,减小电感器的尺寸不仅会导致零交叉点处的电流尖峰增加,还会增加死区引起的第三象限损耗,这些影响综合起来会增加总谐波失真 (THD) 并降低效率。

为解决上述问题,C2000™ 实时MCU 通过功能丰富的PWM 启用软启动算法,从而消除电流尖峰并改善THD。C2000™ MCU还拥有扩展的指令集、浮点运算单元 (FPU) 和三角函数加速器 (TMU),进而显著降低PWM导通时间等参数的计算时间。计算时间减少还可提高控制环路频率,再结合PWM的150ps分辨率,可帮助降低第三象限损耗。

使用TI GaN 技术连接C2000™ MCU

如图1所示,C2000™ MCU、数字隔离器件和GaN FET 都是器件连接中必不可少的一部分。

“图
图 1:连接C2000™ MCU、数字隔离器和600V GaN FET

增强型数字隔离器可帮助抑制瞬态噪声并保护C2000™ MCU。C2000™ MCU 无需外部逻辑器件,利用其高分辨率 PWM、可配置逻辑块和增强型捕捉模块实现GaN FET 的安全性、温度和错误报告等所有功能,从而提供精确的控制输出。600V GaN FET 中的集成驱动器可减少由感应振铃导致的系统设计问题。综合使用这些器件便无需增加额外的外部元件,因而可降低总体成本。

结束语

TI C2000™ 实时MCU和GaN FET协调工作,可为现代数字电源系统提供灵活而简单的解决方案,同时也提供了先进的功能来实现高功率密度且高效的数字电源系统。我们的参考设计都经过全面测试并附有完善的文档说明,可帮助加速高效且高功率密度的数字电源系统的开发进程。

本文转载自:德州仪器(作者:Cody Watkins)
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 38

工程师可以使车用充电器和工业电源实现两倍的功率密度和更高效率

德州仪器(TI)今天推出了面向汽车和工业应用的下一代650V和600V氮化镓(GaN)场效应晶体管(FET),进一步丰富拓展了其高压电源管理产品线。与现有解决方案相比,新的GaN FET系列采用快速切换的2.2 MHz集成栅极驱动器,可帮助工程师提供两倍的功率密度和高达99%的效率,并将电源磁性器件的尺寸减少59%。TI利用其独有的GaN材料和在硅(Si)基氮化镓衬底上的加工能力开发了新型FET,与碳化硅(SiC)等同类衬底材料相比,更具成本和供应链优势。

更多信息请登录www.ti.com.cn/LMG3425R030-pr-cnwww.ti.com.cn/LMG3525R030-Q1-pr-cn查看。

电气化正在改变汽车行业,消费者越来越需要充电更快、续航里程更远的车辆。因此,工程师亟需在不影响汽车性能的同时,设计出更紧凑、轻便的汽车系统。与现有的Si或SiC解决方案相比,使用TI的新型车用GaN FET可将电动汽车(EV)车载充电器和DC/DC转换器的尺寸减少多达50%,从而使工程师能够延长电池续航,提高系统可靠性并降低设计成本。在工业设计中,这些新器件可在更低功耗和更小电路板空间占用的情况下,在AC/DC电力输送应用(例如超大规模的企业计算平台以及5G电信整流器)中实现更高的效率和功率密度。

Strategy Analytics的动力总成、车身、底盘和安全服务总监Asif Anwar表示:“GaN等宽带隙半导体技术无疑为电力电子设备(尤其是高压系统)带来了更稳定的性能。德州仪器历经十多年的投资和开发,提供了独有的整体解决方案 -- 将内部硅基氮化镓(GaN-on-Si)器件的生产、封装与优化的硅基驱动器技术相结合,从而能在新应用中成功采用GaN。”

德州仪器高压电源解决方案副总裁Steve Lambouses表示:“工业和汽车应用日益需要在更小的空间内提供更多的电力,设计人员必须提供能在终端设备长久的生命周期内可靠运行的电源管理系统。凭借超过4,000万个小时的器件可靠性测试和超过5 GWh的功率转换应用测试,TI的GaN技术为工程师提供了能满足任何市场需求的可靠的全生命周期保障。”

以更少的器件实现翻倍的功率密度

在高电压、高密度应用中,电路板空间最小化是设计中的重要目标。随着电子系统变得越来越小,其内部组件也必须不断缩小并更加紧凑。TI的新型GaN FET集成了快速开关驱动器以及内部保护和温度感应功能,使工程师能够在电源管理设计中减小电路板尺寸、降低功耗的同时实现高性能。这种集成再加上TI GaN技术的高功率密度,使工程师能够在通常的离散解决方案中减少10多个组件。此外,在半桥配置中应用时,每个新型30mΩ FET均可支持高达4 kW的功率转换。

创造TI更高功率因数校正(PFC)效率

GaN具有快速开关的优势,可实现更小、更轻、更高效的电源系统。在过去,要获得快速的开关性能,就会有更高的功率损耗。为了避免这种不利后果,新型GaN FET采用了TI的智能死区自适应功能,以减少功率损耗。例如,在PFC中,智能死区自适应功能与分立式GaN和SiC金属氧化物硅FET(MOSFET)相比,可将第三象限损耗降低多达66%。智能死区自适应功能也消除了控制自适应死区时间的必要,从而降低了固件复杂性和开发时长。更多信息请阅读应用说明“通过智能死区自适应功能实现GaN性能最大化”。

更大限度提高热性能

采用TI GaN FET的封装产品,其热阻抗比性能最接近的同类产品还要低23%,因此可使工程师使用更小的散热器,同时简化散热设计。无论应用场景如何,这些新器件均可提供更大的散热设计灵活性,并可选择底部或顶部冷却封装。此外,FET集成的数字温度报告功能还可实现有源电源管理,从而使工程师能在多变的负载和工作条件下优化系统的热性能。

封装、供货情况

目前TI.com.cn上已提供四种新型工业级600V GaN FET的预生产版本,采用12mm x 12mm方形扁平无引脚(QFN)封装。TI预计工业级器件LMG3425R030将于2021年第一季度实现批量生产。评估模块可于TI.com.cn购买。TI.com.cn上提供多种付款方式、信贷额度以及快速、可靠的运输选项。

新型LMG3522R030-Q1和LMG3525R030-Q1 650V车用GaN FET的预生产版本和评估模块预计将于2021年第一季度在TI.com.cn上发售。如需提供工程样品,可登录www.ti.com/autogan申请。

关于德州仪器(TI)

德州仪器(TI)(纳斯达克股票代码:TXN)是一家全球化的半导体公司,致力于设计、制造、测试和销售模拟和嵌入式处理芯片,用于工业、汽车、个人电子产品、通信设备和企业系统等市场。我们致力于通过半导体技术让电子产品更经济实用,创造一个更美好的世界。如今,每一代创新都建立在上一代创新的基础之上,使我们的技术变得更小巧、更快速、更可靠、更实惠,从而实现半导体在电子产品领域的广泛应用,这就是工程的进步。这正是我们数十年来乃至现在一直在做的事。 欲了解更多信息,请访问公司网站www.ti.com.cn

围观 6
订阅 RSS - GaN