DC/DC转换器

全球知名半导体制造商ROHM(总部位于日本京都),面向移动设备、可穿戴式设备及IoT设备,开发出一款内置MOSFET的升降压型DC/DC转换器*1)“BD83070GWL”,该产品实现了超高效率和超低消耗电流。

“BD83070GWL”是面向小型电池驱动的电子设备,以“低功耗环保元器件的标杆版”为目标开发而成的超低功耗升降压型电源IC。产品内置低损耗的MOSFET,并配置低耗电消耗电流电路,在各种电池驱动设备(电动牙刷以及剃须刀等)工作时(负载电流200mA时),功率转换效率高达97%,而且,消耗电流仅为2.8µA,在升降压型电源IC领域中也达到极高水平。因此,相比普通产品效率大大提升的应用在待机时(负载电流100µA时),电池续航时间可延长1.53倍(ROHM调查数据),非常有助于延长小型电池驱动的各种电子设备的续航时间。

本产品已于2019年4月开始出售样品(样品价格300日元/个,不含税),计划于2019年10月开始暂以月产100万个的规模投入量产。前期工序的生产基地为ROHM Hamamatsu Co.,Ltd.(日本滨松市),后期工序的生产基地ROHM Apollo Co., Ltd.(日本行桥市)。此外,搭载本产品的评估板“BD83070GWL-EVK-001”也与本新闻稿发布同期开始网售,客户可从Ameya360、icHub、Sekorm购买。

未来,ROHM将继续利用模拟技术的优势,开发节能、高性能的电源IC,为社会的节能贡献力量。

背景

近年来,移动设备、可穿戴式设备及IoT设备等用电池驱动的电子设备已迅速普及。而且,为了提高产品的设计灵活度并确保配置新功能所用的空间,要求这些产品上搭载的元器件的功耗要降低到极限,以实现小型化并延长电池续航时间。

一直以来,ROHM充分利用模拟设计技术、电源系统工艺以及垂直统合型生产体制优势,致力于开发满足市场需求的电源IC。其中,针对移动设备也推出了升压电源IC“BU33UV7NUX”和降压电源 IC“BD70522GUL”等高效率、超低功耗的电源IC,非常有助于延长电池驱动应用的续航时间。此次,产品阵容又新增了超高性能的升降压电源IC,可满足更多应用的需求。


特点详情

新产品“BD83070GWL”作为1.2mm x 1.6mm的小型升降压电源IC,有助于配备电池或小型电池的设备实现长时间驱动,比如在应用待机时(负载电流 100µA时),与普通产品相比,电池续航时间可延长1.53倍。该产品具有以下特点:

1. 在宽负载电流范围内实现最高达97%的高转换效率

通过内置采用了功率系统工艺0.13µm的BiCDMOS的低损耗MOSFET,在各种电池驱动设备(电动牙刷以及剃须刀等)运行时(负载电流200mA时),实现最高达97%的高功率转换效率,在其他从轻负载到最大负载范围内(100μA~1A)也实现了高达90%以上的高转换效率。

并且,采用ROHM独有控制技术“X Ramp PWM控制”,能够对输入电压实现升降压无缝切换。

2. 在升降压电源IC领域,实现仅2.8µA超低消耗电流,属于业界顶尖水平

产品采用超低消耗电流与高速响应性能兼备的低消耗电流电路,以及为降低损耗而根据负荷对开关控制进行优化。

通过凝聚ROHM的低消耗电流模拟技术优势,在升降压电源IC领域,实现了低至2.8µA的超低消耗电量。


应用示例

  •  IoT设备等配备纽扣电池的电子设备

  •  智能手机和平板电脑等配备锂离子电池的电子设备

  •  玩具、电动牙刷等配备干电池的电子设备

无论应用和运行条件如何,适用于各种配备小型电池的应用的实现长时间驱动。

用于移动设备、节能性能超高的电源IC产品阵容


评估板信息

开始销售时间 2019年7月起

评估板型号 BD83070GWL-EVK-001

网售平台 Ameya360、icHub、Sekorm

新产品支持页面:https://www.rohm.com.cn/products/power-management/switching-regulators/i...


术语解说

*1) DC/DC转换器、降压、升压、升降压

电源IC的一种,具有将直流(DC)电压转换为直流电压的功能。主要有用来降低电压的降压型和用来升高电压的升压型两种类型。“升降压”可根据输入电压在升压和降压之间切换,但由于电路变得冗余,因此在响应能性和消耗电流方面存在问题。

围观 102

一、正确理解DC/DC转换器

DC/DC转换器为转变输入电压后有效输出固定电压的电压转换器。DC/DC转换器分为三类:升压型DC/DC转换器、降压型DC/DC转换器以及升降压型DC/DC转换器。根据需求可采用三类控制。PWM控制型效 率高并具有良好的输出电压纹波和噪声。PFM控制型即使长时间使用,尤其小负载时具有耗电小的优点。PWM/PFM转换型小负载时实行PFM控制,且在重 负载时自动转换到PWM控制。目前DC-DC转换器广泛应用于手机、MP3、数码相机、便携式媒体播放器等产品中。在电路类型分类上属于斩波电路。

二、DC/DC转换器电路设计原理

DC- DC就是直流-直流变换,一般有升压(BOOST)、降压(BUCK型)两种。降压式DC/DC变换器的输出电流较大,多为数百毫安至几安,因此适用于输 出电流较大的场合。降压式DC/DC变换器基本工作原理电路如下图所示。VT1为开关管,当VT1导通时,输入电压Vi通过电感L1向负载RL供电,与此 同时也向电容C2充电。在这个过程中,电容C2及电感L1中储存能量。当VT1截止时,由储存在电感L1中的能量继续向RL供电,当输出电压要下降时,电 容C2中的能量也向RL放电,维持输出电压不变。二极管VD1为续流二极管,以便构成电路回路。输出的电压Vo经R1和R2组成的分压器分压,把输出电压 的信号反馈至控制电路,由控制电路来控制开关管的导通及截止时间,使输出电压保持不变。

关于DC/DC转换器电路设计的技巧

三、DC-DC电路设计要考虑以下条件:

1.外部输入电源电压的范围,输出电流的大小。

2.DC-DC输出的电压,电流,系统的功率最大值。

四、选择PWM IC要考虑的要点有:

1.PWM IC的最大输入电压。
2.PWM开关的频率,这一点的选择关系到系统的效率。对储能电感,电容的大小的选择也有一定影响。
3.MOS管的所能够承受的最大额定电流及其额定功率,如果DC-DC IC内部自带MOS,只需要考虑IC输出的额定电流。
4.MOS的开关电压Vgs大小及最大承受电压。

五、电感、二极管、电容的选择

1.电感量:大小选择主要由开关频率决定,大小会影响电源纹波;额定电流,电感的内阻选择由系统功耗决定。
2.二极管:通常都用肖特基二极管。选择时要考滤反向电压,前向电流,一般情况反向电压为输入电源电压的二倍,前向电流为输出电流的两倍。
3.电容:电容的选择基于开关的频率,系统纹波的要求及输出电压的要求。容量和电容内部的等效电阻决定纹波大小(当然和电感也有关)。

六、如何得到一个电源纹波相对较小、对系统其他电路干扰相对较小,而且相对稳定可靠的DC-DC电路,需要对以上电路的原理做如下修改:

1.输入部分:电源输入端需要加电感电容滤波。目的:由于MOS管的开关及电感在瞬间的变化会造成输入电源的波动,尤其是在系统耗电波动较大时,影响更为明显。

2.输出部分:
(1)假定C2的选择的100uF是正确的,我们想得到更小的纹波,可以将100uF的电容改成两颗47uF的电容(基于相同类型的电容);如果100uF电容采用的是铝电解,可以在原来的基础上加一颗10uF的磁片电容或钽电容。
(2)在输出端再加一颗电容和一颗电容对原来的电源做一个LC滤波,会得到一个纹波更小的电源。

总之,DC-DC转换器为整个系统中的各个电路供电。只有掌握DC/DC转换器电路设计的技巧,把所有要考虑的因素考虑全面,才能提高系统的整体性能,达到各个电路的性能效果的体现。

转自: 灵动微电MMCU

围观 550

利用电容、电感的储能的特性,通过可控开关(MOSFET等)进行高频开关的动作,将输入的电能储存在电容(感)里,当开关断开时,电能再释放给负载,提供能量就是开关电源。其输出的功率或电压的能力与占空比(由开关导通时间与整个开关的周期的比值)有关。开关电源可以用于升压和降压。

DC/DC转换器是利用MOSFET开关闭合时在电感器中储能,并产生电流。当开关断开时,贮存的电感器能量通过二极管输出给负载。如下图所示。

三种典型的DC/DC变换器框图

所示三种变换器的工作原理都是先储存能量,然后以受控方式释放能量,从而得到所需要的输出电压。对某一工作来讲,最佳的开关式DC/DC变换器是可以用最小的安装成本满足系统总体需要的。这可以通过一组描述开关式DC/DC变换器性能的参数来衡量,它们包括:高效率、小的安装尺寸、小的静态电流、较小的工作电压、低噪声、高功能集成度、足够的输出电压调节能力、低安装成本。

工作效率

①电感式DC/DC变换器:电池供电的电感式DC/DC变换器的转换效率为80%~85%,其损耗主要来自外部二极管和调制器开关。

②无电压调节的电荷泵:为基本电荷泵(如TC7660H)。它具有很高的功率转换效率(一般超过90%),这是因为电荷泵的损耗主要来自电容器的ESR和内部开关管的导通电阻(RDS-ON),而这两者都可以做得很低。

③带电压调节的电荷泵:它是在基本电荷泵的输出之后增加了低压差的线性调节器。虽然提供了电压调节,但其效率却由于后端调节器的功耗而下降。为达到最高的效率,电荷泵的输出电压应当与后端调节器调节后的电压尽可能接近。

最佳选择是:无电压调节式电荷泵(在不需要严格的输出调节的应用中),或带电压调节式电荷泵(如果后端调节器两端的压差足够小)。

安装尺寸

①电感式DC/DC变换器:虽然很多新型电感式DC/DC变换器都可以提供SOT封装,但它们通常仍然需要物理外形较大的外部电感器。而且电感式DC/DC变换器的电路布局自身也需要较大的板级空间(额外的去耦、特殊的地线处理、屏蔽等)。

② 无电压调节的电荷泵:电荷泵不用电感器,但需要外部电容器。新型电荷泵器件采用SOP封装,工作在较高的频率,因此可以使用占用空间较小的小型电容器 (1μF)。电荷泵IC芯片和外部电容器合起来所占用的空间,还不如电感式DC/DC变换器中的电感大。利用电荷泵还很容易获得正、负组合的输出电压。如 TCM680器件仅用外部电容即可支持+2UIN的输出电压。而采用电感式DC/DC变换器要获得同样的输出电压则需要独立的两个变换器,如用一个变换 器,就得用具有复杂拓扑结构的变压器。

③带电压调节的电荷泵:增加分立的后端电压调节器占用了更多空间,然而许多此类调节器都有SOT形式的封装,相对减少了占用的空间。新型带电压调节的电荷泵器件,如TCM850,在单个8引脚50lC封装中集成了电荷泵、后端电压调节器和关闭控制。

最佳选择是:无电压调节或带电压调节电荷泵。

静态电流

①电感式DC/DC变换器:频率调制(PFM)电感式DC/DC变换器是静态电流最小的开关式DC/DC变换器,通过频率调制进行电压调节可在小负载电流下使供电电流最小。

②无电压调节的电荷泵:电荷泵的静态电流与工作频率成比例。多数新型电荷泵工作在150kHz以上的频率,从而可使用1μF甚至更小的电容。为克服因此带来的静态电流大的问题,一些电荷泵具有关闭输入引脚,以在长时间闲置的情况下关闭电荷泵,从而将供电电流降至接近零。

③带电压调节的电荷泵:后端电压调节器增加了静态电流,因此带电压调节的电荷泵在静态电流方面比基本电荷泵要差。

最佳选择是:电感式DC/DC变换器,特别是频率调制(PFM)开关式。

最小工作电压

①电感式DC/DC变换器:电池供电专用电感式DC/DC变换器(如TC16)可在低至1V甚至更低的电压下启动工作,因此非常适合用于单节电池供电的电子设备。

②无电压调节的电荷泵/带电压调节的电荷泵:多数电荷泵的最小工作电压为1.5V或更高,因此适合于至少有两节电池的应用。

最佳选择是:电感式DC/DC变换器。

产生的噪声

①电感式DC/DC变换器:电感式DC/DC变换器是电源噪声和开关辐射噪声(EMI)的来源。宽带PFM电感式DC/DC变换器会在宽频带内产生噪声。可采取提高电感式DC/DC变换器的工作频率,使其产生的噪声落在系统的频带之外。

②无电压调节的电荷泵/带电压调节的电荷泵:电荷泵不使用电感,因此其EMI影响可以忽略。泵输入噪声可以通过一个小电容消除。

最佳选择是:无电压调节或带电压调节的电荷泵。

集成度

①电感式DC/DC变换器:现已开发出集成了开关调节器和其他功能(如电压检测器和线路调节器)的芯片。如TC16芯片就在一个SO-8封装内集成了一个PFM升压变换器、LD0和电压检测器。与分立实现方案相比,此类器件提供了优异的电气性能,并且占用较小的空间。

②无电压调节的电荷泵:基本电荷泵,如TC7660,没有附加功能的集成,占用空间小。

③带电压调节的电荷泵:集成更多功能的带电压调节电荷泵芯片已成为目前的一种发展趋势。很明显,下一代带调节电荷泵的功能集成度将可与电感式DC/DC变换器集成芯片相比。

最佳选择是:电感式DC/DC变换器。

输出调节

①电感式DC/DC变换器:电感式DC/DC变换器具有良好的输出调节能力。一些电感式DC/DC变换器还具有外部补偿引脚,允许根据应用“精细调整”输出的瞬态响应特性。

②无电压调节的电荷泵:此类器件输出没有电压调节,它们只简单地将输人电压变换为负或刀倍的输出电压。困此,输出电压会随着负载电流的增加而下降。虽然这对某些应用(如LCD偏置)并不是问题,但不适用需要稳定的输出电压的应用场合。

③ 带电压调节的电荷泵:它通过后端线性电压调节器(片上或外部)提供电压调节(稳压)。在一些情况下,需要为电荷泵增加开关级数,以为后端调节器提供足够的 净空间,这时就需要增加外部电容,从而会给尺寸、成本和效率带来负面的影响。但后端线性调压器可使带调节电荷泵的输出电压的稳定性与电感式DC/DC变换 器一样。

最佳选择是:带电压调节的电荷泵。

安装成本

①电感式DC/DC变换器:近年来采用电感式DC/DC变换器的成本逐渐下降,并且对外部元件的需求也变得更少了。但电感式DC/DC变换器最少需要一个外部电感、电容和肖特基二极管。二极管、电感,再加上相对价格较高的开关变换芯片,其总成本要比电荷泵高。

②无电压调节的电荷泵:无电压调节的电荷泵比电感式DC/DC变换器便宜,且仅需要外部电容(没有电感),节约了板空间、电感的成本,以及某些情况下的屏蔽成本。

③带电压调节的电荷泵:带电压调节的电荷泵的成本大约与电感开关式DC/DC变换器本身的成本相当。在一些情况下,可采用外部后端电压调节器以降低成本,但却会增加所需的安装空间和降低工作效率。

最佳选择是:在不需要严格稳压的场合的最佳选择为无电压调节的电荷泵;若为对输出电压稳压有要求的场合,选择带电压调节的电荷泵和电感式DC/DC变换器的成本大致相当。

按照上述的最佳选择窍门运用于设计应用中,将会更有利于节省时间成本,提高效率。 

来源:EDN电子技术

(直接点击图片可进入调查页面)

开发板测评图片
围观 443
订阅 RSS - DC/DC转换器