DC/DC变换器

车载充电器(OBC)是电动汽车和混合动力汽车的重要组成部分(HEV)。OBC通常由一个AC/DC(功率因数校正电路)和一个隔离式DC/DC转换器,如下图所示:

1.png


▲典型两级式OBC架构

随着电池容量的增加,OBC需要设计更高的功率。与OBC的功率容量越来越大相反的是,由于车内空间和冷却能力有限,因此功率密度和效率等规格也越来越高。高效率和高功率密度成为OBC的两个关键要求。宽带隙(WBG)功率器件的技术发展和应用,例如碳化硅(SiC)器件和氮化镓(GaN)器件,因其更高的开关速度、更低的开关损耗以及更低的导通电阻温度依赖性,在很多场合已经成为传统硅(Si)器件的优越替代品。

系统简介

CLLC(电容-电感-变压器-电感-电容)电路拓扑,具有对称谐振腔和软开关特性以及更高频率工作的能力,是实现OBC高效、高功率密度的良好选择。CLLC拓扑的设计、控制和实施架构,如下图所示:

2.png

▲CLLC隔离DC/DC拓扑架构

∎ 采用GD32F303RCT6微控制器:得益于HRPWM定时与ADC采样的高精度,使得CLLC将设计频率提高到500kHz在数字控制的可实现性上,变成了可能,从而为整机系统的高功率密度和高效率综合优化提供了控制保障

∎ GD32F303精准的PWM边沿控制:采用无传感器的同步整流控制技术,可进一步减少整机的硬件成本。

∎ 独有专利支撑的平面磁集成优化方案:有效提升了整机系统效率,同时磁性元件采用PCB绕组减少了人工绕制变压器的人力成本。

系统关键参数规格列下表所示:

参数

规格

原边电压 (Vprim)

500V-840V DC

副边电压 (Vsec)

250V-450V DC

功率 (Po)

3.3kW Max

输出电流 (Iout)

11A Max

效率

Peak 97.5%

PWM开关频率 (fs)

额定500kHz (400kHz-600kHz)

但是与传统的移相全桥、不对称LLC拓扑相比,CLLC谐振变换器存在两个谐振电感与一个变压器,占据整个车载充电器体积的25%以上,这严重影响了变换器功率密度,因此减小磁性元件的体积成为提高车载充电器功率密度的一种重要方法,前述提高开关频率可以有效减小磁性元件的体积,但由于磁芯材料和功率器件限制,通过无限制的抬升开关频率来减小磁性元件体积的做法并不可取。

另一个提高功率密度的方法是使用磁集成技术,将同一个变换器中的多个磁性元件以电磁场基本理论为约束集成在一付磁芯上,如在CLLC拓扑上,将原边电感、变压器、副边电感集成至一个磁芯中,同时结合宽禁带器件的使用,可以将整体设计体积压缩至一个非常可观的体积内。

3.png

4.jpg

▲绕线式与平面集成变压器示意图

而在效率的提升方面,除了使用性能更好的宽禁带器件外,磁性元件的损耗优化也是一个突破方向,使用PCB铜箔作为绕组配合平面变压器的使用,相对传统利兹线绕制的变压器在损耗、散热性能上均存在较大优势,且自定义设计的磁芯在各种体积要求的工况均能满足设计要求。

5.png

▲3.3kW双向CLLC实验样机

无传感器同步整流策略

原副边调制策略分别为:原边驱动信号频率来自闭环控制的计算结果,控制调频实现对输出电压的控制;同步整流控制策略为:副边同步整流信号的上升沿与原边信号一致,下降沿由控制器实时计算出的副边管导通时间控制。

6.png

▲双向CLLC正向传输功率同步整流策略

使用此方法同步整流,仅需借助控制器本身对PWM上升沿和下降沿的位置精准控制,能省去传统基于电压或电流检测方案进行的同步整流的检测芯片。

软件系统框架

7.png

▲系统软硬件配合框图

∎ 2个HRPWM高分辨率PWM中断,最大定时频率600kHz。要求具有精准的对上升沿和下降沿的控制。

∎ 8路12位ADC采样,分别用于采样输入电压、输入电流、原边谐振电流、输出电压、输出电流、副边谐振电流,原边谐振电容电压、副边谐振电容电压。

∎ 2个普通定时器TIMER,用于控制逻辑定时。

∎ CAN总线通信用于系统状态监测。


来源:GD32MCU

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 30

意法半导体L7983是一款紧凑型3V-60V、300mA同步DC/DC降压功率变换器,具有灵活的动态模式选择,可满足噪声敏感应用的要求,并在轻载时能够实现能效最大化。

L7983采用意法半导体专有的创新技术,可以控制低边功率MOSFET,提供两种工作模式选择:恒定开关频率的低噪声模式(LNM)和低功耗模式(LCM)。在LCM模式下,变换器实现了轻载或空载条件下的能效最大化。可以使用外部引脚选择工作模式,模式控制引脚可以由应用动态控制,也可以通过拉高电平或低电平来预设。

借助宽输入电压范围,L7983可以工作在12V和24V的工业总线电压下,并且安全裕度充足。新产品还适合电池供电应用,可用于工业设备的故障保护系统、分布式智能节点、家电、机器人、电信设备。简易好用的低噪声模式将让精密感测应用受益。

在较高的最大输入电压保证坚固性和可靠性的同时,L7983的200kHz-2MHz宽开关频率可提高设计灵活性。此外,可选的扩展频率抖动功能有助于最大程度减少电磁干扰(EMI)。10µA的静态电流对系统电源需求的影响微乎其微,并提供一个外部使能引脚,在关闭模式下,把静态电流降至2.3µA。

其他功能包括支持供电时序和外部时钟同步。内部安全保护功能包括软启动、过热保护、逐脉冲检测限流、过压保护,以及可以根据输入电压调整的欠压锁定(UVLO)。还集成了补偿电路,有助于简化设计,节省物料清单成本。

此次共推出三款L7983产品,分别是3.3V固定输出电压的L7983PU33R、5.0V固定输出电压的L7983PU50R、输出电压可调的L7983PUR。每款产品都有一个相关的评估板。STEVAL-L7983V33可加快采用L7983PU33R的产品项目的开发速度。STEVAL-L7983V50 和 STEVAL-L7983ADJ分别支持L7983PU50R和L7983PUR。L7983现已量产,采用 3mm x 3mm DFN10封装。

更多详情访问www.st.com/l7983-pr

关于意法半导体

意法半导体拥有46,000名半导体技术、产品和方案的创新者和创造者,掌握半导体供应链和最先进的制造设备。作为一家独立的半导体设备制造商,意法半导体与十万余客户、上千合作伙伴一起研发产品和解决方案,共同构建生态系统,帮助他们更好地应对各种挑战和新机遇,满足世界对可持续发展的更高需求。意法半导体的技术让人们的出行更智能,电力和能源管理更高效,物联网和5G技术应用更广泛。详情请浏览意法半导体公司网站:www.st.com

围观 7
订阅 RSS - DC/DC变换器