电源IC

人们常常想当然地为PCB的电路上电,殊不知这可能造成破坏以及有损或无损闩锁状况。这些问题可能并不突出,直到量产开始,器件和设计的容差接受检验时才被发现,但为时已晚,项目和产品的时间及交货将会受到极大影响,成本大幅攀升。为了解决这一阶段中发现的错误,将需要进行大量修改,包括PCB布局变更、设计更改和额外的异常现象等。

随着集成电路时代的到来,许多功能模块被集成到一个IC中,因而需要利用多个电源为这些模块供电。这些电源的电压有时候相同,但更多时候是不同的。市场上的片上系统(SoC) IC越来越多,这就产生了对电源进行时序控制和管理的需求。

ADI公司的数据手册通常会提供足够的信息,指导设计工程师针对各IC设计正确的上电序列。然而,某些IC明确要求定义恰当的上电序列。对于ADI公司的许多IC,情况都是如此。在使用多个电源的IC中,如转换器(包括模数转换器ADC和数模转换器DAC)、数字信号处理器(DSP)、音频/视频、射频及许多其它混合信号IC中,这一要求相当常见。本质上,包含某种带数字引擎的模拟输入/输出的IC都属于这一类,可能需要特定的电源时序控制。这些IC可能有独立的模拟电源和数字电源,某些甚至还有数字输入/输出电源,详情请参阅下文讨论的具体示例。

本应用笔记讨论设计工程师在新设计中必须考虑的某些更微妙的电源问题,特别是当IC需要多个不同的电源时。目前,一些较常用的电源电压是:+1.8V、+2.0V、+2.5V、+3.3V、+5V、−5V、+12V和−12V。

PULSAR ADC示例——绝对最大额定值
ADI公司的所有数据手册都含有“绝对最大额定值”(AMR)部分,它说明为避免造成破坏,对引脚或器件可以施加的最大电压、电流或温度。

AD7654PulSAR 16位ADC是采用三个(或更多)独立电源的混合信号ADC的范例。这些ADC需要数字电源(DVDD)、模拟电源(AVDD)和数字输入/输出电源(OVDD)。它们是ADC,用于将模拟信号转换成数字代码,因此需要一个模拟内核来处理传入的模拟输入。数字内核负责处理位判断过程和控制逻辑。I/O内核用于设置数字输出的电平,以便与主机逻辑接口(电平转换)。ADC的电源规格可以在相应数据手册的“绝对最大额定值”部分找到。表1摘自AD7654 (Rev. B)数据手册的“绝对最大额定值”部分。

1.png

表1. AD7654的绝对最大额定值(Rev. B)

注意,表1中所有三个电源的范围都是−0.3V至+7V。相对于DVDD和OVDD,AVDD的范围是+7V至−7V,这就确认了AVDD和DVDD无论哪一个先上电都是可行的。此外,AVDD和OVDD无论哪一个先上电也是可行的。然而,DVDD与OVDD之间存在限制。技术规格规定,OVDD最多只能比DVDD高0.3V,因此DVDD必须在OVDD之前或与之同时上电。如果OVDD先上电(假设5V),则DVDD在上电时比OVDD低5V,这不符合“绝对最大额定值”要求,可能会损坏器件。

模拟输入INAx、INBx、REFx、INxN和REFGND的限制是:这些输入不得超过AVDD +0.3V或AGND −0.3V。这说明,如果模拟信号或基准电压源先于AVDD存在,则模拟内核很可能会上电到闩锁状态。这通常是一种无损状况,但流经AVDD的电流很容易逐步升至标称电流的10倍,导致ADC变得相当热。这种情况下,内部静电放电(ESD)二极管变为正偏,进而使模拟电源上电。为解决这个问题,输入和/或基准电压源在ADC上电时应处于未上电或未连接状态。

同样,数字输入电压范围为−0.3V至DVDD +0.3V。这说明,数字输入必须小于DVDD +0.3V。因此,在上电时,DVDD必须先于微处理器/逻辑接口电路或与之同时上电。与上述模拟内核情况相似,这些引脚上的ESD二极管也可能变为正偏,使数字内核上电到未知状态。

AD7621、AD7622、AD7623、AD7641和AD7643等PulSAR ADC速度更快,是该系列的新型器件,采用更低的2.5V电源(AD7654则采用5V电源)。AD7621和AD7623具有明确规定的上电序列。表2摘自AD7621 (Rev.0)数据手册的“绝对最大额定值”部分。

2.png

表2. AD7621的绝对最大额定值(Rev. 0)

同样,OVDD与DVDD之间存在限制。“绝对最大额定值”规定:OVDD必须小于或等于DVDD+0.3V,而DVDD则必须小于2.3V。一旦DVDD在上电期间达到2.3V,该限制便不再适用。如果不遵守该限制,AD7621(和AD7623)可能会受损(见图1)。

3.png

图1. 可能的上电/关断序列—AD7621 (Rev. 0)

因此,一般上电序列可能是这样的:AVDD、DVDD、OVDD、VREF。但是,每个应用都不一样,需要具体分析。注意,器件关断与器件上电同样重要,切记遵守同样的规格要求。图1所示为AD7621的典型上电/关断序列。

对于这些ADC,模拟输入和基准电压源的情况与上文所述相同。对任何模拟输入引脚施加电压都可能导致ESD二极管变为正偏,从而使模拟内核上电到未知状态。

这些ADC的数字输入和输出略有不同,因为这些器件应支持5 V数字输入。这些ADC是AD7654的速度升级版本,数字输入和输出均与OVDD电源相关,因为它能支持更高的3.3V电压。注意:数字输入限制为5.5V,而AD7654则为DVDD+0.3V。

Σ-Δ型ADC示例

AD7794 Σ-Δ型24位ADC是另一个很好的例子。表3摘自AD7794 (Rev. D)数据手册的“绝对最大额定值”部分。

4.png

表3. AD7794的绝对最大额定值(Rev. D)

该ADC的问题与基准电压有关,它必须小于AVDD + 0.3 V。因此,AVDD必须先于基准电压或与之同时上电。

电源时序控制器

ADI公司提供许多电源时序控制器件。一般而言,其工作原理是:当第一个调节器的输出电压达到预设阈值时,就会开始一段时间延迟,延迟结束后才会使能后续调节器上电。关断期间的程序与此相似。时序控制器也可以用于控制电源良好信号等逻辑信号的时序,例如:对器件或微处理器施加一个复位信号,或者简单地指示所有电源均有效。

建议

如今大部分要求高速和低功耗的电路PCB上都需要多个电源,例如:+1.8V、+2.0V、+2.5V、+3.3V、+5V、−5V、+12V和−12V。为PCB上的这些电源供电并不是一件轻而易举的事情。必须仔细分析,设计一个正确可靠的上电和关断序列。采用分立设计变得越来越困难,解决之道就是采用电源时序控制IC,只要改变一下代码就能改变上电顺序,而不用变更PCB布局布线。

来源:亚德诺半导体

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 148

全球知名半导体制造商ROHM(总部位于日本京都市)面向处理大功率的5G通信基站和PLC、逆变器等FA设备,开发出两款实现高耐压和大电流的、内置MOSFET的降压型DC/DC转换器IC*1“BD9G500EFJ-LA”和“BD9F500QUZ”。

“”

近年来,在以5G通信基站和FA设备为首的先进工业设备中,越来越多地配备融和了AI和IoT技术的新功能。随之而来的是对所使用的电源IC提出了越来越高的要求:不仅要小型高效,还要具有高耐压性能,以确保即使受到雷电等引起的突发性浪涌电压*2也不会损坏;而且还要能支持大电流,以使众多功能工作。

ROHM利用先进的电源系统工艺和垂直统合型生产体制,为工业设备市场开发出众多电源IC产品,这些产品不仅特性出色,而且还很注重可靠性和长期稳定供应。此次,ROHM又面向先进的工业设备领域,开发出高耐压和大电流性能兼备的DC/DC转换器IC。

新产品是非隔离型*3DC/DC转换器IC,利用ROHM擅长的模拟设计技术开发而成,采用电源系统的BiCDMOS高耐压工艺,可提供先进工业设备所需的电源功能。

“BD9G500EFJ-LA”适用于48V电源系统,具有业内超高的80V耐压,同时由于其内置MOSFET,可实现同类产品中高达5A的输出电流,且支持大功率,从而有助于5G通信基站和充电桩等设备实现更高可靠性和性能。而“BD9F500QUZ”则适用于24V电源系统,采用小型薄型封装(3.0mm×3.0mm×0.4mm),虽然小巧却实现了39V的耐压和5A的输出电流,有助于以FA设备为首的众多先进工业设备实现更高性能和更小体积。

新产品已于2021年5月开始暂以月产10万个的规模投入量产(样品价格 500日元/个,不含税)。新产品和评估板“BD9G500EFJ-EVK-001”和“BD9F500QUZ-EVK-001”已经开始通过电商进行销售,从AMEYA360、SEKORM等电商平台均可购买。

今后,ROHM将充分利用模拟设计技术优势继续开发高性能、高可靠性的产品,持续为工业设备的节能、小型化和安全性贡献力量。

“”

“”

<新产品特点>

这两款新产品采用电源系统中的BiCDMOS高耐压工艺,并利用ROHM擅长的模拟设计技术开发而成,是内置MOSFET的非隔离型DC/DC转换器IC。新产品具备以下特点,有助于先进工业设备实现更高可靠性、更高性能和进一步小型化。

非常适用于48V电源系统的“BD9G500EFJ-LA”

1. 实现业内超高的80V耐压性能,安全工作范围更宽

BD9G500EFJ-LA采用BiCDMOS高耐压工艺,在内置高边MOSFET(非同步整流型*4)的非隔离型DC/DC转换器IC中,实现了业内超高的80V耐压等级,从而可以使安全工作范围更宽。与同等输出电流的普通产品相比,耐压成功地提高了约20%,不仅在5G通信基站和服务器等的48V主电源系统中,而且在电池日益大型化的电动自行车和电动工具的60V电源系统中,都拥有足够的余量应对突发性的浪涌电压,因此有助于提高应用产品的可靠性。

“”

2. 实现业内超高的5A输出电流,有助于先进工业设备进一步提高性能并缩小体积

BD9G500EFJ-LA不仅具有80V的高耐压性能,而且还实现了在耐压60V以上的DC/DC转换器IC中超高的5A最大输出电流。非常有助于实现旨在通过安装AI和IoT功能来提高性能的工业设备,以及配备更多功能的设备的小型化。另外,通过内置低损耗MOSFET,虽为非同步整流,却仍可在2A至5A很宽的输出电流范围内实现高达85%的功率转换效率,更加节能。

非常适用于24V电源系统的“BD9F500QUZ”

1. 通过节省安装面积和削减部件数量,有助于应用产品降低成本并更加小型化

BD9F500QUZ是内置MOSFET(同步整流型*4)的非隔离型DC/DC转换器IC,利用ROHM的模拟设计技术优势,以小型封装(3.0mm×3.0mm×0.4mm)实现了39V的耐压和5A的输出电流。与具有同等性能的普通产品(6.0mm×4.0mm×0.8mm)相比,尺寸减少约60%,而且还可以减少外围部件的数量。不仅如此,利用高达2.2MHz的高速开关性能,即使使用1.5µH的小型线圈也能实现稳定工作,可节省在电路板上的安装面积并可降低高度,从而有助于PLC和逆变器等各种FA设备的主电源系统的24V线应用降低部件成本并实现小型化。

“”

2. 高效率和低发热量运行,有助于提高可靠性

BD9F500QUZ虽然采用的是不利于散热的小型封装,而且还支持高速开关,但仍然能够以很低的发热量工作。在具有同等功能的小尺寸产品中,IC温度接近100℃,因此需要采取散热措施(通过外置散热器和MOSFET来分散热量),而ROHM新产品的工作效率高达90%(输出电流为3A时),并采用散热性能出色的封装,工作时的发热温度仅为65℃左右,因此客户无需采取散热措施,从而有助于提高应用的可靠性。

“”

<新产品DC/DC转换器IC的主要特性>

“”

适用于48V电源系统的“BD9G500EFJ-LA”
・ 需要48V级电源输入的5G通信基站的功率放大器、充电桩、服务器等
・ 需要60V/48V级电源输入的电动自行车、电动工具等
・ 浪涌电压较大的电机应用(吸尘器和洗衣机等白色家电)

适用于24V电源系统的“BD9F500QUZ”
・ 需要24V级电源输入的包括PLC和逆变器在内的各种FA设备、监视摄像头等
・ 用于各种工业设备中的FPGA和SoC等低电压工作控制系统的电源

来源:罗姆半导体集团
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 4
订阅 RSS - 电源IC