PCB

PCB电镀后处理的工艺环节解析

demi的头像

完整的PCB电镀工艺包括电镀的后处理,广义地说,所有电镀层在完成电镀以后都要进行后处理。最简单的后处理包括热水清洗和干燥。而许多镀层还要求有钝化、着色、染色、封闭、涂装等后处理,以使镀层的性能得到更好发挥和加强。

PCB工艺中底片变形问题分析

demi的头像

一、底片变形原因与解决方法:

原因:
(1)温湿度控制失灵
(2)曝光机温升过高

解决方法:
(1)通常情况下温度控制在22±2℃,湿度在55%±5%RH。
(2)采用冷光源或有冷却装置的曝机及不断更换备份底片

二、底片变形修正的工艺方法:

1、在掌握数字化编程仪的操作技术情况下,首先装底片与钻孔试验板对照,测出其长、宽两个变形量,在数字化编程仪上按照变形量的大小放长或缩短孔位,用放长或缩短孔位后的钻孔试验板去应合变形的底片,免除了剪接底片的烦杂工作,保证图形的完整性和精确性。称此法为“改变孔位法”。

2、针对底片随环境温湿度变化而改变的物理现象,采取拷贝底片前将密封袋内的底片拿出,工作环境条件下晾挂4-8小时,使底片在拷贝前就先变形,这样就会使拷贝后的底片变形就很小,称此法“晾挂法”。

3、对于线路简单、线宽及间距较大、变形不规则的图形,可采用将底片变形部分剪开对照钻孔试验板的孔位重新拚接后再去拷贝,称此法“剪接法”。

4、采用试验板上的孔放大成焊盘去重变形的线路片,以确保最小环宽技术要求,称此法为“焊盘重叠法”。

一. 前言

孔无铜属于pcb功能性问题,随着科技的发展PCB精度(纵横比)要求亦越来越来高,它不但给PCB制造者带来的麻烦(成本与品质的矛盾),而且给下游客户埋下了严重的品质隐患!下面就此做简单分析,希望能对相关同仁有所启示和帮助!

二. 鱼骨图分析

三. 孔无铜的分类及特征

1. PTH孔无铜:表铜板电层均匀正常,孔内板电层从孔口至断口处分布都较均匀,图电后断口处被图电层包住。

2. 板电铜薄孔无铜:

(1)整板板电铜薄孔无铜―――表铜及孔铜板电层都很薄,经图电前处理微蚀后孔中间大部分板电铜都被蚀掉,图电后被图电层包住;

(2)孔内板电铜薄孔无铜―――表铜板电层均匀正常,孔内板电层从孔口至断口处呈递减拉尖趋势,且断口处一般处于孔的中间部位,断口处铜层左

右均匀性与对称性较好,图电后断口处被图电层包住。

3. 修坏孔:

(1)铜检修坏孔―――表铜板电层均匀正常,孔铜板电层无拉尖趋势,断口处不规则,可能出现在孔口也可能出现在孔中间,在孔壁上往往会出现粗糙凸起等不良,图电后断口处被图电层包住。

(2)蚀检修怀孔―――表铜板电层均匀正常,孔铜板电层无拉尖趋势,断口处不规则,可能出现在孔口也可能出现在孔中间,在孔壁上往往会出现粗糙凸起等不良,断口处图电层未将板电层包住。

4. 塞孔无铜:图电蚀刻后,有明显的物质卡塞在孔中,大部分孔壁被蚀掉,断口处图电层未将板电层包住。

5. 图电孔无铜:断口处图电层未将板电层包住―――图电层与板电层厚度均匀,断口处齐断;图电层呈拉尖趋势直至消失,板电层超过图电层继续延伸一段距离再行断开。


四. 改善方向:

1. 操作(上下板、参数设定、保养、异常处理);

2. 设备(天车、加料器、加热笔、震动、打气、过滤循环);

3. 材料(板材、药水);

4. 方法(参数、程序、流程及品质控制);

5. 环境(脏、乱、杂导致的变异)。

6. 量测(药水化验、铜检目视)。

来源:百度文库

围观 312

一、什么是无卤基材

无卤素基材:

按照JPCA-ES-01-2003标准:氯(C1)、溴(Br)含量分别小于0.09%Wt(重量比)的覆铜板,定义为无卤型覆铜板。(同时,CI+Br总量≤0.15%[1500PPM])

二、为什么要禁卤

卤素:

指化学元素周期表中的卤族元素,包括氟(F)、氯(CL)、溴(Br)、碘(1)。目前,阻燃性基材,FR4、CEM-3等,阻燃剂多为溴化环氧树脂。

相关机构研究表明,含卤素的阻燃材料(聚合多溴联苯PBB:聚合多溴化联苯乙醚PBDE),废弃着火燃烧时,会放出二嗯英(dioxin戴奥辛TCDD)、苯呋喃(Benzfuran)等,发烟量大,气味难闻,有高毒性气体,致癌,人体摄入后无法排出,严重影响健康。

因此,欧盟的法律禁止使用的是PBB和PBDE等六种物质。中国信息产业部同样文件要求,投入市场的电子信息产品不能含有铅、汞、六价铬、聚合多溴联苯或聚合多溴化联苯乙醚等物质。

据了解,PBB和PBDE在覆铜板行业已基本上不在使用,较多使用的是除PBB和PBDE以外的溴阻燃材料,例如四溴双苯酚A,二溴苯酚等,其化学分子式是CISHIZOBr4。这类含溴作阻燃剂的覆铜板虽未有任何法律法规加以规定,但这类含溴型覆铜板,燃烧或电器火灾时,会释放出大量有毒气体(溴化型),发烟量大;在PCB作热风整平和元件焊接时,板材受高温(>200)影响,也会释放出微量的溴化氢;是否也会产生有毒气体,还在评估中。

综上。卤素作为原材料使用带来的负面后果影响巨大,禁卤是有很必要的。

三、无卤基板的原理

就目前而言,大部分的无卤材料主要以磷系和磷氮系为主。含磷树脂在燃烧时,受热分解生成偏聚磷酸,极具强脱水性,使高分子树脂表面形成炭化膜,隔绝树脂燃烧表面与空气接触,使火熄灭,达到阻燃效果。含磷氮化合物的高分子树脂,燃烧时产生不燃性气体,协助树脂体系阻燃。

四、无卤板材的特点

1、材料的绝缘性

由于采用P或N来取代卤素原子因而一定程度上降低了环氧树脂的分子键段的极性,从而提高质的绝缘电阻及抗击穿能力。

2、材料的吸水性

无卤板材由于氮磷系的还氧树脂中N和P的狐对电子相对卤素而言较少,其与水中氢原子形成氢键的机率要低于卤素材料,因而其材料的吸水性低于常规卤素系阻燃材料。对于板材来说,低的吸水性对提高材料的可靠性以及稳定性有一定的影响。

3、材料的热稳定性

无卤板材中氮磷的含量大于普通卤系材料卤素的含量,因而其单体分子量以及Tg值均有所增加。在受热的情况下,其分子的运动能力将比常规的环氧树脂要低,因而无卤材料其热膨胀系数相对要小。

相对于含卤板材,无卤板材具有更多优势,无卤素板材取代含卤板材也是大势所趋。

五、生产无卤PCB的体会

1、层压

层压参数,因不同公司的板材可能会有所不同。就拿上面所说的生益基板及PP做多层板来说,其为保证树脂的充分流动,使结合力良好,要求较低的板料升温速率(1.0-1.5℃/min)及多段的压力配合,另在高温阶段则要求时间较长,180℃维持50分钟以上。以下是推荐的一组压板程序设定及实际的板料升温情况。压出的板检测其铜箔与基板的结合力为1.ON/mm,图电后的板经过六次热冲击均未出现分层、气泡现象。

2、钻孔加工性

钻孔条件是一个重要参数,直接影响PCB在加工过程中的孔壁质量。无卤覆铜板由于采用P、N系列官能团增大了分子量同时增强了分子键的刚性,因而也增强了材料的刚性,同时,无卤材料的Tg点一般较普通覆铜板要高,因此采用普通FR-4的钻孔参数进行钻孔,效果一般不是很理想。钻无卤板时,需在正常的钻孔条件下,适当作一些调整。

3、耐碱性

一般无卤板材其抗碱性都比普通的FR-4要差,因此在蚀刻制程上以及在阻焊后返工制程上,应特别注意,在碱性的退膜液中浸泡时间不能太长,以防出现基材白斑。

4、无卤阻焊制作

目前世面上推出的无卤阻焊油墨也有很多种,其性能与普通液态感光油墨相差不大具体操作上也与普通油墨基本差不多。

无卤PCB板由于具有较低的吸水率以及适应环保的要求,在其他性能也能够满足PCB板的品质要求,因此,无卤PCB板的需求量已然越来越大。

来源:电子发烧友网

围观 465

解决EMI问题的办法很多,现代的EMI抑制方法包括:利用EMI抑制涂层、选用合适的EMI抑制零配件和EMI仿真设计等。本文从最基本的PCB布板出发,讨论PCB分层堆叠在控制EMI辐射中的作用和设计技巧。

电源汇流排

在IC的电源引脚附近合理地安置适当容量的电容,可使IC输出电压的跳变来得更快。然而,问题并非到此为止。由於电容呈有限频率响应的特性,这使得电容无法在全频带上生成干净地驱动IC输出所需要的谐波功率。除此之外,电源汇流排上形成的瞬态电压在去耦路径的电感两端会形成电压降,这些瞬态电压就是主要的共模EMI干扰源。我们应该怎么解决这些问题?

就我们电路板上的IC而言,IC周围的电源层可以看成是优良的高频电容器,它可以收集为干净输出提供高频能量的分立电容器所泄漏的那部份能量。此外,优良的电源层的电感要小,从而电感所合成的瞬态信号也小,进而降低共模EMI。

当然,电源层到IC电源引脚的连线必须尽可能短,因为数位信号的上升沿越来越快,最好是直接连到IC电源引脚所在的焊盘上,这要另外讨论。

为了控制共模EMI,电源层要有助於去耦和具有足够低的电感,这个电源层必须是一个设计相当好的电源层的配对。有人可能会问,好到什么程度才算好?问题的答案取决於电源的分层、层间的材料以及工作频率(即IC上升时间的函数)。通常,电源分层的间距是6mil,夹层是FR4材料,则每平方英寸电源层的等效电容约为75pF。显然,层间距越小电容越大。

上升时间为100到300ps的器件并不多,但是按照目前IC的发展速度,上升时间在100到300ps范围的器件将占有很高的比例。对於100到300ps上升时间的电路,3mil层间距对大多数应用将不再适用。那时,有必要采用层间距小於1mil的分层技术,并用介电常数很高的材料代替FR4介电材料。现在,陶瓷和加陶塑料可以满足100到300ps上升时间电路的设计要求。

尽管未来可能会采用新材料和新方法,但对於今天常见的1到3ns上升时间电路、3到6mil层间距和FR4介电材料,通常足够处理高端谐波并使瞬态信号足够低,就是说,共模EMI可以降得很低。本文给出的PCB分层堆叠设计实例将假定层间距为3到6mil。

电磁屏蔽

从信号走线来看,好的分层策略应该是把所有的信号走线放在一层或若干层,这些层紧挨著电源层或接地层。对於电源,好的分层策略应该是电源层与接地层相邻,且电源层与接地层的距离尽可能小,这就是我们所讲的“分层"策略。

PCB堆叠

什么样的堆叠策略有助於屏蔽和抑制EMI?以下分层堆叠方案假定电源电流在单一层上流动,单电压或多电压分布在同一层的不同部份。多电源层的情形稍后讨论。

4层板

4层板设计存在若干潜在问题。首先,传统的厚度为62mil的四层板,即使信号层在外层,电源和接地层在内层,电源层与接地层的间距仍然过大。

如果成本要求是第一位的,可以考虑以下两种传统4层板的替代方案。这两个方案都能改善EMI抑制的性能,但只适用於板上元件密度足够低和元件周围有足够面积(放置所要求的电源覆铜层)的场合。

第一种为首选方案,PCB的外层均为地层,中间两层均为信号/电源层。信号层上的电源用宽线走线,这可使电源电流的路径阻抗低,且信号微带路径的阻抗也低。从EMI控制的角度看,这是现有的最佳4层PCB结构。第二种方案的外层走电源和地,中间两层走信号。该方案相对传统4层板来说,改进要小一些,层间阻抗和传统的4层板一样欠佳。

如果要控制走线阻抗,上述堆叠方案都要非常小心地将走线布置在电源和接地铺铜岛的下边。另外,电源或地层上的铺铜岛之间应尽可能地互连在一起,以确保DC和低频的连接性。

6层板

如果4层板上的元件密度比较大,则最好采用6层板。但是,6层板设计中某些叠层方案对电磁场的屏蔽作用不够好,对电源汇流排瞬态信号的降低作用甚微。下面讨论两个实例。

第一例将电源和地分别放在第2和第5层,由於电源覆铜阻抗高,对控制共模EMI辐射非常不利。不过,从信号的阻抗控制观点来看,这一方法却是非常正确的。

第二例将电源和地分别放在第3和第4层,这一设计解决了电源覆铜阻抗问题,由於第1层和第6层的电磁屏蔽性能差,差模EMI增加了。如果两个外层上的信号线数量最少,走线长度很短(短於信号最高谐波波长的1/20),则这种设计可以解决差模EMI问题。将外层上的无元件和无走线区域铺铜填充并将覆铜区接地(每1/20波长为间隔),则对差模EMI的抑制特别好。如前所述,要将铺铜区与内部接地层多点相联。

通用高性能6层板设计一般将第1和第6层布为地层,第3和第4层走电源和地。由於在电源层和接地层之间是两层居中的双微带信号线层,因而EMI抑制能力是优异的。该设计的缺点在於走线层只有两层。前面介绍过,如果外层走线短且在无走线区域铺铜,则用传统的6层板也可以实现相同的堆叠。

另一种6层板布局为信号、地、信号、电源、地、信号,这可实现高级信号完整性设计所需要的环境。信号层与接地层相邻,电源层和接地层配对。显然,不足之处是层的堆叠不平衡。

这通常会给加工制造带来麻烦。解决问题的办法是将第3层所有的空白区域填铜,填铜后如果第3层的覆铜密度接近於电源层或接地层,这块板可以不严格地算作是结构平衡的电路板。填铜区必须接电源或接地。连接过孔之间的距离仍然是1/20波长,不见得处处都要连接,但理想情况下应该连接。

10层板

由於多层板之间的绝缘隔离层非常薄,所以10或12层的电路板层与层之间的阻抗非常低,只要分层和堆叠不出问题,完全可望得到优异的信号完整性。要按62mil厚度加工制造12层板,困难比较多,能够加工12层板的制造商也不多。

由於信号层和回路层之间总是隔有绝缘层,在10层板设计中分配中间6层来走信号线的方案并非最佳。另外,让信号层与回路层相邻很重要,即板布局为信号、地、信号、信号、电源、地、信号、信号、地、信号。

这一设计为信号电流及其回路电流提供了良好的通路。恰当的布线策略是,第1层沿X方向走线,第3层沿Y方向走线,第4层沿X方向走线,以此类推。直观地看走线,第1层1和第3层是一对分层组合,第4层和第7层是一对分层组合,第8层和第10层是最后一对分层组合。当需要改变走线方向时,第1层上的信号线应藉由“过孔"到第3层以后再改变方向。实际上,也许并不总能这样做,但作为设计概念还是要尽量遵守。

同样,当信号的走线方向变化时,应该藉由过孔从第8层和第10层或从第4层到第7层。这样布线可确保信号的前向通路和回路之间的耦合最紧。例如,如果信号在第1层上走线,回路在第2层且只在第2层上走线,那么第1层上的信号即使是藉由“过孔"转到了第3层上,其回路仍在第2层,从而保持低电感、大电容的特性以及良好的电磁屏蔽性能。

如果实际走线不是这样,怎么办?比如第1层上的信号线经由过孔到第10层,这时回路信号只好从第9层寻找接地平面,回路电流要找到最近的接地过孔(如电阻或电容等元件的接地引脚)。如果碰巧附近存在这样的过孔,则真的走运。

假如没有这样近的过孔可用,电感就会变大,电容要减小,EMI一定会增加。当信号线必须经由过孔离开现在的一对布线层到其他布线层时,应就近在过孔旁放置接地过孔,这样可以使回路信号顺利返回恰当的接地层。对於第4层和第7层分层组合,信号回路将从电源层或接地层(即第5层或第6层)返回,因为电源层和接地层之间的电容耦合良好,信号容易传输。

多电源层的设计

如果同一电压源的两个电源层需要输出大电流,则电路板应布成两组电源层和接地层。在这种情况下,每对电源层和接地层之间都放置了绝缘层。这样就得到我们期望的等分电流的两对阻抗相等的电源汇流排。如果电源层的堆叠造成阻抗不相等,则分流就不均匀,瞬态电压将大得多,并且EMI会急剧增加。

如果电路板上存在多个数值不同的电源电压,则相应地需要多个电源层,要牢记为不同的电源创建各自配对的电源层和接地层。在上述两种情况下,确定配对电源层和接地层在电路板的位置时,切记制造商对平衡结构的要求。

总结

鉴於大多数工程师设计的电路板是厚度62mil、不带盲孔或埋孔的传统印制电路板,本文关於电路板分层和堆叠的讨论都局限於此。厚度差别太大的电路板,本文推荐的分层方案可能不理想。此外,带盲孔或埋孔的电路板的加工制程不同,本文的分层方法也不适用。

电路板设计中厚度、过孔制程和电路板的层数不是解决问题的关键,优良的分层堆叠是保证电源汇流排的旁路和去耦、使电源层或接地层上的瞬态电压最小并将信号和电源的电磁场屏蔽起来的关键。理想情况下,信号走线层与其回路接地层之间应该有一个绝缘隔离层,配对的层间距(或一对以上)应该越小越好。根据这些基本概念和原则,才能设计出总能达到设计要求的电路板。现在,IC的上升时间已经很短并将更短,本文讨论的技术对解决EMI屏蔽问题是必不可少的。

来源:电子工程师之家

围观 445

对于电容的安装,首先要提到的就是安装距离。容值最小的电容,有最高的谐振频率,去耦半径最小,因此放在最靠近芯片的位置。容值稍大些的可以距离稍远,最外层放置容值最大的。但是,所有对该芯片去耦的电容都尽量靠近芯片。

下面图就是一个摆放位置的例子。本例中的电容等级大致遵循10倍等级关系。

还有一点要注意,在放置时,最好均匀分布在芯片的四周,对每一个容值等级都要这样。通常芯片在设计的时候就考虑到了电源和地引脚的排列位置,一般都是均匀分布在芯片的四个边上的。因此,电压扰动在芯片的四周都存在,去耦也必须对整个芯片所在区域均匀去耦。如果把上图中的680pF电容都放在芯片的上部,由于存在去耦半径问题,那么就不能对芯片下部的电压扰动很好的去耦。

电容的安装

在安装电容时,要从焊盘拉出一小段引出线,然后通过过孔和电源平面连接,接地端也是同样。这样流经电容的电流回路为:电源平面-》过孔-》引出线-》焊盘-》电容-》焊盘-》引出线-》过孔-》地平面,图2直观的显示了电流的回流路径。

第一种方法从焊盘引出很长的引出线然后连接过孔,这会引入很大的寄生电感,一定要避免这样做,这是最糟糕的安装方式。

第二种方法在焊盘的两个端点紧邻焊盘打孔,比第一种方法路面积小得多,寄生电感也较小,可以接受。

第三种在焊盘侧面打孔,进一步减小了回路面积,寄生电感比第二种更小,是比较好的方法。

第四种在焊盘两侧都打孔,和第三种方法相比,相当于电容每一端都是通过过孔的并联接入电源平面和地平面,比第三种寄生电感更小,只要空间允许,尽量用这种方法。

最后一种方法在焊盘上直接打孔,寄生电感最小,但是焊接是可能会出现问题,是否使用要看加工能力和方式。推荐使用第三种和第四种方法。

需要强调一点:有些工程师为了节省空间,有时让多个电容使用公共过孔,任何情况下都不要这样做。最好想办法优化电容组合的设计,减少电容数量。

由于印制线越宽,电感越小,从焊盘到过孔的引出线尽量加宽,如果可能,尽量和焊盘宽度相同。这样即使是0402封装的电容,你也可以使用20mil宽的引出线。引出线和过孔安装如上图所示,注意图中的各种尺寸。

围观 888

电路板系统的互连包括:芯片到电路板、PCB板内互连以及PCB与外部器件之间的三类互连。在RF设计中,互连点处的电磁特性是工程设计面临的主要问题之一,本文介绍上述三类互连设计的各种技巧,内容涉及器件安装方法、布线的隔离以及减少引线电感的措施等等。

目前有迹象表明,印刷电路板设计的频率越来越高。随着数据速率的不断增长,数据传送所要求的带宽也促使信号频率上限达到1GHz,甚至更高。这种高频信号技术虽然远远超出毫米波技术范围(30GHz),但的确也涉及RF和低端微波技术。

RF工程设计方法必须能够处理在较高频段处通常会产生的较强电磁场效应。这些电磁场能在相邻信号线或PCB线上感生信号,导致令人讨厌的串扰(干扰及总噪声),并且会损害系统性能。回损主要是由阻抗失配造成,对信号产生的影响如加性噪声和干扰产生的影响一样。

高回损有两种负面效应:

1. 信号反射回信号源会增加系统噪声,使接收机更加难以将噪声和信号区分开来;

2. 任何反射信号基本上都会使信号质量降低,因为输入信号的形状出现了变化。

尽管由于数字系统只处理1和0信号并具有非常好的容错性,但是高速脉冲上升时产生的谐波会导致频率越高信号越弱。尽管前向纠错技术可以消除一些负面效应,但是系统的部分带宽用于传输冗余数据,从而导致系统性能的降低。一个较好的解决方案是让RF效应有助于而非有损于信号的完整性。建议数字系统最高频率处(通常是较差数据点)的回损总值为-25dB,相当于VSWR为1.1。

PCB设计的目标是更小、更快和成本更低。对于RFPCB而言,高速信号有时会限制PCB设计的小型化。目前,解决串扰问题的主要方法是进行接地层管理,在布线之间进行间隔和降低引线电感(studcapacitance)。降低回损的主要方法是进行阻抗匹配。此方法包括对绝缘材料的有效管理以及对有源信号线和地线进行隔离,尤其在状态发生跳变的信号线和地之间更要进行间隔。

由于互连点是电路链上最为薄弱的环节,在RF设计中,互连点处的电磁性质是工程设计面临的主要问题,要考察每个互连点并解决存在的问题。电路板系统的互连包括芯片到电路板、PCB板内互连以及PCB与外部装置之间信号输入/输出等三类互连。

围观 386

PCB作为各种元器件的载体与电路信号传输的枢纽已经成为电子信息产品的最为重要而关键的部分,其质量的好坏与可靠性水平决定了整机设备的质量与可靠性。随着电子信息产品的小型化以及无铅无卤化的环保要求,PCB也向高密度高Tg以及环保的方向发展。但是由于成本以及技术的原因,PCB在生产和应用过程中出现了大量的失效问题,并因此引发了许多的质量纠纷。为了弄清楚失效的原因以便找到解决问题的办法和分清责任,必须对所发生的失效案例进行失效分析。

失效分析的基本程序

要获得PCB失效或不良的准确原因或者机理,必须遵守基本的原则及分析流程,否则可能会漏掉宝贵的失效信息,造成分析不能继续或可能得到错误的结论。

一般的基本流程是,首先必须基于失效现象,通过信息收集、功能测试、电性能测试以及简单的外观检查,确定失效部位与失效模式,即失效定位或故障定位。对于简单的PCB或PCBA,失效的部位很容易确定,但是,对于较为复杂的BGA或MCM封装的器件或基板,缺陷不易通过显微镜观察,一时不易确定,这个时候就需要借助其它手段来确定。接着就要进行失效机理的分析,即使用各种物理、化学手段分析导致PCB失效或缺陷产生的机理,如虚焊、污染、机械损伤、潮湿应力、介质腐蚀、疲劳损伤、CAF或离子迁移、应力过载等等。再就是失效原因分析,即基于失效机理与制程过程分析,寻找导致失效机理发生的原因,必要时进行试验验证,一般尽应该可能的进行试验验证,通过试验验证可以找到准确的诱导失效的原因。这就为下一步的改进提供了有的放矢的依据。最后,就是根据分析过程所获得试验数据、事实与结论,编制失效分析报告,要求报告的事实清楚、逻辑推理严密、条理性强,切忌凭空想象。

分析的过程中,注意使用分析方法应该从简单到复杂、从外到里、从不破坏样品再到使用破坏的基本原则。只有这样,才可以避免丢失关键信息、避免引入新的人为的失效机理。就好比交通事故,如果事故的一方破坏或逃离了现场,在高明的警察也很难作出准确责任认定,这时的交通法规一般就要求逃离现场者或破坏现场的一方承担全部责任。PCB或PCBA的失效分析也一样,如果使用电烙铁对失效的焊点进行补焊处理或大剪刀进行强力剪裁PCB,那么再分析就无从下手了,失效的现场已经破坏了。特别是在失效样品少的情况下,一旦破坏或损伤了失效现场的环境,真正的失效原因就无法获得了。

失效分析技术

光学显微镜

光学显微镜主要用于PCB的外观检查,寻找失效的部位和相关的物证,初步判断PCB的失效模式。外观检查主要检查PCB的污染、腐蚀、爆板的位置、电路布线以及失效的规律性、如是批次的或是个别,是不是总是集中在某个区域等等。

X射线 (X-ray)

对于某些不能通过外观检查到的部位以及PCB的通孔内部和其他内部缺陷,只好使用X射线透视系统来检查。X光透视系统就是利用不同材料厚度或是不同材料密度对X光的吸湿或透过率的不同原理来成像。该技术更多地用来检查PCBA焊点内部的缺陷、通孔内部缺陷和高密度封装的BGA或CSP器件的缺陷焊点的定位。

切片分析

切片分析就是通过取样、镶嵌、切片、抛磨、腐蚀、观察等一系列手段和步骤获得PCB横截面结构的过程。通过切片分析可以得到反映PCB(通孔、镀层等)质量的微观结构的丰富信息,为下一步的质量改进提供很好的依据。但是该方法是破坏性的,一旦进行了切片,样品就必然遭到破坏。

扫描声学显微镜

目前用于电子封装或组装分析的主要是C模式的超声扫描声学显微镜,它是利用高频超声波在材料不连续界面上反射产生的振幅及位相与极性变化来成像,其扫描方式是沿着Z轴扫描X-Y平面的信息。因此,扫描声学显微镜可以用来检测元器件、材料以及PCB与PCBA内部的各种缺陷,包括裂纹、分层、夹杂物以及空洞等。如果扫描声学的频率宽度足够的话,还可以直接检测到焊点的内部缺陷。典型的扫描声学的图像是以红色的警示色表示缺陷的存在,由于大量塑料封装的元器件使用在SMT工艺中,由有铅转换成无铅工艺的过程中,大量的潮湿回流敏感问题产生,即吸湿的塑封器件会在更高的无铅工艺温度下回流时出现内部或基板分层开裂现象,在无铅工艺的高温下普通的PCB也会常常出现爆板现象。此时,扫描声学显微镜就凸现其在多层高密度PCB无损探伤方面的特别优势。而一般的明显的爆板则只需通过目测外观就能检测出来。

显微红外分析

显微红外分析就是将红外光谱与显微镜结合在一起的分析方法,它利用不同材料(主要是有机物)对红外光谱不同吸收的原理,分析材料的化合物成分,再结合显微镜可使可见光与红外光同光路,只要在可见的视场下,就可以寻找要分析微量的有机污染物。如果没有显微镜的结合,通常红外光谱只能分析样品量较多的样品。而电子工艺中很多情况是微量污染就可以导致PCB焊盘或引线脚的可焊性不良,可以想象,没有显微镜配套的红外光谱是很难解决工艺问题的。显微红外分析的主要用途就是分析被焊面或焊点表面的有机污染物,分析腐蚀或可焊性不良的原因。

扫描电子显微镜分析(SEM)

扫描电子显微镜(SEM)是进行失效分析的一种最有用的大型电子显微成像系统,最常用作形貌观察,现时的扫描电子显微镜的功能已经很强大,任何精细结构或表面特征均可放大到几十万倍进行观察与分析。

在PCB或焊点的失效分析方面,SEM主要用来作失效机理的分析,具体说来就是用来观察焊盘表面的形貌结构、焊点金相组织、测量金属间化物、可焊性镀层分析以及做锡须分析测量等。与光学显微镜不同,扫描电镜所成的是电子像,因此只有黑白两色,并且扫描电镜的试样要求导电,对非导体和部分半导体需要喷金或碳处理,否则电荷聚集在样品表面就影响样品的观察。此外,扫描电镜图像景深远远大于光学显微镜,是针对金相结构、显微断口以及锡须等不平整样品的重要分析方法。

热分析

差示扫描量热仪(DSC)

差示扫描量热法(Differential Scanning Calorim- etry)是在程序控温下,测量输入到物质与参比物质之间的功率差与温度(或时间)关系的一种方法。是研究热量随温度变化关系的分析方法,根据这种变化关系,可研究分析材料的物理化学及热力学性能。DSC的应用广泛,但在PCB的分析方面主要用于测量PCB上所用的各种高分子材料的固化程度、玻璃态转化温度,这两个参数决定着PCB在后续工艺过程中的可靠性。

热机械分析仪(TMA)

热机械分析技术(Thermal Mechanical Analysis)用于程序控温下,测量固体、液体和凝胶在热或机械力作用下的形变性能。是研究热与机械性能关系的方法,根据形变与温度(或时间)的关系,可研究分析材料的物理化学及热力学性能。TMA的应用广泛,在PCB的分析方面主要用于PCB最关键的两个参数:测量其线性膨胀系数和玻璃态转化温度。膨胀系数过大的基材的PCB在焊接组装后常常会导致金属化孔的断裂失效。

热重分析仪 (TGA)

热重法(Thermogravimetry Analysis)是在程序控温下,测量物质的质量随温度(或时间)的变化关系的一种方法。TGA通过精密的电子天平可监测物质在程控变温过程中发生的细微的质量变化。根据物质质量随温度(或时间)的变化关系,可研究分析材料的物理化学及热力学性能。在PCB的分析方面,主要用于测量PCB材料的热稳定性或热分解温度,如果基材的热分解温度太低,PCB在经过焊接过程的高温时将会发生爆板或分层失效现象。

来源:PCB工艺技术

围观 520

布线(Layout)是pcb设计工程师最基本的工作技能之一。走线的好坏将直接影响到整个系统的性能,大多数高速的设计理论也要最终经过Layout得以实现并验证,由此可见,布线在高速pcb设计中是至关重要的。

下面将针对实际布线中可能遇到的一些情况,分析其合理性,并给出一些比较优化的走线策略。

蛇形线是Layout中经常使用的一类走线方式。其主要目的就是为了调节延时,满足系统时序设计要求。设计者首先要有这样的认识:蛇形线会破坏信号质量,改变传输延时,布线时要尽量避免使用。但实际设计中,为了保证信号有足够的保持时间,或者减小同组信号之间的时间偏移,往往不得不故意进行绕线。  

那么,蛇形线对信号传输有什么影响呢?走线时要注意些什么呢?其中最关键的两个参数就是平行耦合长度(Lp)和耦合距离(S),如图1-8-21所示。很明显,信号在蛇形走线上传输时,相互平行的线段之间会发生耦合,呈差模形式,S越小,Lp越大,则耦合程度也越大。可能会导致传输延时减小,以及由于串扰而大大降低信号的质量,其机理可以参考第三章对共模和差模串扰的分析。

下面是给Layout工程师处理蛇形线时的几点建议:

1. 尽量增加平行线段的距离(S),至少大于3H,H指信号走线到参考平面的距离。通俗的说就是绕大弯走线,只要S足够大,就几乎能完全避免相互的耦合效应。

2. 减小耦合长度Lp,当两倍的Lp延时接近或超过信号上升时间时,产生的串扰将达到饱和。

3. 带状线(Strip-Line)或者埋式微带线(EmbeddedMicro-strip)的蛇形线引起的信号传输延时小于微带走线(Micro-strip)。理论上,带状线不会因为差模串扰影响传输速率。

4. 高速以及对时序要求较为严格的信号线,尽量不要走蛇形线,尤其不能在小范围内蜿蜒走线。

5. 可以经常采用任意角度的蛇形走线,如图1-8-20中的C结构,能有效的减少相互间的耦合。

6. 高速pcb设计中,蛇形线没有所谓滤波或抗干扰的能力,只可能降低信号质量,所以只作时序匹配之用而无其它目的。

7. 有时可以考虑螺旋走线的方式进行绕线,仿真表明,其效果要优于正常的蛇形走线。

来源:电子技术应用

围观 456

页面

订阅 RSS - PCB