layout

GD32F30x 和 GD32F403 系列硬件为参考。

一. 硬件设计 

1.电源

1.png




2.png

3.png

2.复位

4.png


注意:

1. 内部上拉电阻40kΩ,建议外部上拉电阻建议10kΩ,以使得电压干扰不会导致芯片工作异常;

2. 若考虑静电等影响,可在NRST管脚处放置ESD保护二极管;

3. 尽管MCU内部有硬件POR电路,仍推荐外部加NRST复位阻容电路;

4. 如果MCU启动异常(由于电压波动等),可适当增加NRST对地电容值,拉长MCU复位完成时间,避开上电异常时序区。

3.时钟

GD32F30x/GD32F403系列内部有完备的时钟系统,可以根据不同的应用场合,选择合适的时钟源,时钟主要特征:

4-32MHz外部高速晶体振荡器(HXTAL);

8MHz内部高速RC振荡器(IRC8M);

32.768KHz外部低速晶体振荡器(LXTAL);

48 MHz内部高速RC振荡器(IRC48M);

40kHz内部低速RC振荡器(IRC40K);

PLL时钟源可选HXTAL、IRC8M或IRC48M;

HXTAL时钟可监控;

时钟树如下:

5.png







6.png

7.png

8.png

9.png

4.启动配置

GD32F30x/GD32F403系列提供三种启动方式,可以通过BOOT0和BOOT1来进行相关的配置。

用户可以配置BOOT0和BOOT1,进行上电复位或系统复位,从而确定启动选项。电路设计时,运行用户程序,BOOT0不能悬空,建议通过一个10kΩ电阻到GND;运行System Memory进行程序更新,需要将BOOT0接高,BOOT1接低,更新完成后,再将BOOT0接低上电才能运行用户程序;SRAM执行程序多用于调试状态下。

嵌入式的 Bootloader 存放在系统存储空间,用于对 FLASH 存储器进行重新编程。在GD32F305xx/ GD32F307xx/ GD32F403xx设备中,Bootloader可以通过USART0 (PA9 and PA10),USART1 (PD5 and PD6),USBFS (PA9, PA11 and PA12)和外界交互。在GD32F303xx(Flash<512kB)设备中,Bootloader可以通过USART0 (PA9 and PA10) 和外界交互, 在GD32F303xx(Flash>512kB)设备中,Bootloader可以通过USART0 (PA9 and PA10) USART1 (PA2 and PA3)和外界交互。




10.png

11.png

5.下载调试

GD32F30x/GD32F403系列内核支持JTAG调试接口和SWD接口。JTAG接口标准为20针接口,其中5根信号接口,SWD接口标准为5针接口,其中2根信号接口。

注意:复位后,调试相关端口为输入PU/PD模式,其中:

PA15:JTDI为上拉模式;

PA14:JTCK / SWCLK为下拉模式;

PA13:JTMS / SWDIO为上拉模式;

PB4:NJTRST为上拉模式;

PB3:JTDO为浮空模式。

12.png





13.png

14.png

15.png

有以下几种方式可以提高SWD下载调试通信的可靠性,增强下载调试的抗干扰能力。

1. 缩短SWD两个信号线长度,最好15cm以内;

2. 将SWD两根线和GND线编个麻花,缠在一起;

3. 在SWD两根信号线对地各并几十pF小电容;

4. SWD两根信号线任意IO串入100Ω~1KΩ电阻。

6.典型外设

ubs外设电路

16.png




17.png

18.png

二. PCB Layout

1.电源去耦电容

GD32F30x/GD32F403系列电源有VDD、VDDA、VREF+和VBAT四个供电脚,100nF去耦电容采用陶瓷即可,且需要保证位置尽可能地靠近电源引脚。电源走线要尽量使得经过电容后再到达MCU电源引脚,建议可通过靠近电容PAD处打Via的形式Layout。

19.png


2.时钟电路

GD32F30x/GD32F403系列时钟有HXTAL和LXTAL,要求时钟电路(包括晶体或晶振及电容等)靠近MCU时钟引脚放置,且尽量时钟走线由GND包裹起来。

20.png


注意:

1. 晶体尽量靠近MCU时钟Pin,匹配电容等尽量靠近晶体;

2. 整个电路尽量与MCU在同层,走线尽量不要穿层;

3. 时钟电路PCB区域尽量禁空,不走任何与时钟无关走线;

4. 大功率、强干扰风险器件及高速走线尽量远离时钟晶体电路;

5. 时钟线进行包地处理,以起到屏蔽效果。

3.复位电路

21.png


注意:复位电路阻容等尽可能地靠近MCU NRST引脚,且NRST走线尽量远离强干扰风险器件及高速走线等,条件允许的话,最好将NRST走线做包地处理,以起到更好的屏蔽效果。

4.USB 电路

USB模块有DM、DP两根差分信号线,建议PCB走线要求做特性阻抗90ohm,差分走线严格按照等长等距规则来走,且尽量使走线最短,如果两条差分线不等长,可在终端用蛇形线补偿短线。

由于阻抗匹配考虑,串联匹配电阻建议50Ω左右即可。当USB终端接口离MCU较远的时候,需要适当增大该串联电阻值。

22.png


注意:

1. 布局时摆放合理,以缩短差分走线距离;

2. 优先绘制差分线,一对差分线上尽量不要超过两对过孔,且需要对称放置;

3. 对称平行走线,保证两根线紧密耦合,避免90°、弧形或45°走线方式;

4. 差分走线上所接阻容、EMC等器件,或测试点,也要做到对称原则。

对于USB HS模块,MCU与外部HS PHY之间的数据线与信号控制线也尽量走短,需要用蛇形线做等长处理,注意事项如下:

1. 布局时摆放合理,USB HS-PHY芯片与MCU之间尽量紧凑;

2. 布线时,以信号线中最长的一根线长度为目标,将其他信号线通过蛇形走线补偿即可。

5.BGA 走线

GD32F403x 系列中包含 BGA100 的封装,对应的型号为 GD32F403VxH6,该芯片走线和其它 BGA 芯片类似,先对各个球型焊盘进行扇出,再进行布线操作。对于 0.5 mm Pitch 的 BGA封装,若将 BGA 焊盘大小设置为 0.25/0.35,过孔距焊盘以及线宽线距为 3 mil 时,可以使用Dog bone 型扇出,扇出后如图 3-5. BGA100 封装的扇出方式所示,过孔距焊盘距离为 4.5mil;但此种布线对 PCB 制造商工艺要求较高,需与 PCB 制造商沟通后再进行布线,若制造商工艺达不到要求,可对此 BGA 封装打盘中孔以及盲埋孔

23.png



参考:

https://gd32mcu.com/cn/download/10?kw=

来源: 嵌入式学习与实践

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 95

在集成电路应用设计中,项目原理图设计完成之后,就需要进行PCB布板的设计。PCB设计是一个至关重要的环节。设计结果的优劣直接影响整个设计功能。因此,合理高效的PCB Layout是芯片电路设计调试成功中至关重要的一步。本次我们就来简单讲一讲PCB Layout的设计要点。

PCB Layout设计要点

元器件封装选择

电阻选择: 所选电阻耐压、最大功耗及温度不能超出使用范围。

“PCB

“PCB

电容选择: 选择时也需要考虑所选电容的耐压与最大有效电流。

“PCB

电感选择: 所选电感有效值电流、峰值电流必须大于实际电路中流过的电流。

电路设计常见干扰

串扰: 设计线路平行走线距离过长时, 导线间的互容、互感将能量耦合至相邻的传输线。可以通过以下方法减少串扰影响:

1.加入安全走线

“PCB

2.实际时尽量让相邻走线互相垂直

“PCB

3.每走一段距离的平行线,增大两者间的间距

“PCB

反射: 由于布线的弯角、分支太多造成传输线上阻抗不匹配,可以通过减少线路上的弯角及分支线或者避免直角走线及分支线补强来进行改善。

“PCB

确定接地方式

单点接地(适用于低频电路):所有的电路接地线接到公共地线同一点, 接线简单且减少地线回路相互干扰。

“PCB

多点接地(适用于多层板电路/高频电路):系统内部各部分就近接地,提供较低的接地阻抗。

“PCB

增加滤波、旁路电容

为保证输入/输出电压稳定,增加输入/输出电容。

“PCB

在电源和IC间增加旁路电容,以保证输入电压稳定并滤除高频噪声。

“PCB

阻抗位置设计

相对来说阻抗越高的位置, 越容易被干扰。如下为一同步降压芯片的PCB阻抗位置设计。

“PCB

“PCB

PCB Layout设计技巧

电源/地线处理

既使在整个PCB板中的布线完成得都很好,但由于电源、 地线的考虑不周到而引起的干扰,会使产品的性能下降. 布线时尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线。对数字电路的PCB可用宽的地导线组成一个回路, 即构成一个地网来使用(模拟电路不能使用该方法)。用大面积敷铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。或是做成多层板,电源、地线各占用一层。

数字与模拟电路的共地处理

数字电路与模拟电路的共地处理: 数字电路与模拟电路共同存在时,布线需要考虑之间互相干扰问题,特别是地线上的噪音干扰。数字电路的频率高,模拟电路的敏感度强,对信号线来说,高频的信号线尽可能远离敏感的模拟电路器件,对地线来说,整个PCB对外连接界只有一个端口,所以必须在PCB内部进行处理数、模共地的问题,而在板内部数字地和模拟地实际上是分开的它们之间互不相连,只是在PCB与外界连接的端口处(如插头等), 数字地与模拟地有一点短接,请注意,只有一个连接点。

信号线分布层

信号线布在电源(地)层上: 在多层印制板布线时,由于在信号线层没有布完的线剩下已经不多,再多加层数就会造成浪费也会给生产增加一定的工作量,成本也相应增加了,为解决这个矛盾,可以考虑在电(地)层上进行布线。首先应考虑用电源层,其次才是地层。因为最好是保留地层的完整性。

信号流向设计

PCB布局设计时,应充分遵守沿信号流向直线放置的设计原则,尽量避免来回环绕。

“”

“PCB

PCB Layout设计实例

“PCB

Layout设计建议

1. 驱动芯片与功率MOSFET摆放尽可能靠近;

2. VCC-GND(CVCC) / VB-VS(CBS)电容尽可能靠近芯片;

3. 芯片散热焊盘加一定数量过孔并且与GND相连接(增加散热、减小寄生电感);

4. GND布线直接与MOSFET 源极(source)相连接, 且避免与源极(source)-漏极(drain)间大电流路径相重合, VS 同理GND布线原则(避免功率回路与驱动回路重合);

5. HO/LO布线尽量宽(60mil-100mil,驱动电流比较高,降低寄生电感的影响);

6. LIN/HIN 逻辑输入端口尽量远离HS布线(避免过高的电压摆动干扰到输入信号)。

“*SQ55664
*SQ55664 Layout设计

来源:strongerHuang
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 272

由于开关电源的开关特性,容易使得开关电源产生极大的电磁兼容方面的干扰,作为一个电源工程师、电磁兼容工程师,或则一个 PCB layout 工程师必须了解电磁兼容问题的原因已经解决措施,特别是 layout 工程师,需要了解如何避免脏点的扩大,本文主要介绍了电源 PCB 设计的要点。

layout与PCB的29个基本关系

1、几个基本原理:任何导线都是有阻抗的;电流总是自动选择阻抗最小的路径;辐射强度和电流、频率、回路面积有关;共模干扰和大 dv/dt 信号对地互容有关;降低 EMI 和增强抗干扰能力的原理是相似的。

2、布局要按电源、模拟、高速数字及各功能块进行分区。

3、尽量减小大 di/dt 回路面积,减小大 dv/dt 信号线长度(或面积,宽度也不宜太宽,走线面积增大使分布电容增大,一般的做法是:走线的宽度尽量大,但要去掉多余的部分),并尽量走直线,降低其隐含包围区域,以减小辐射。

4、感性串扰主要由大 di/dt 环路(环形天线),感应强度和互感成正比,所以减小和这些信号的互感(主要途径是减小环路面积、增大距离)比较关键;容性串扰主要由大 dv/dt 信号产生,感应强度和互容成正比,所有减小和这些信号的互容(主要途径是减小耦合有效面积、增大距离,互容随距离的增大降低较快)比较关键。

5、尽量利用环路对消的原则来布线,进一步降低大 di/dt 回路的面积,如图 1 所示(类似双绞线利

用环路对消原理提高抗干扰能力,增大传输距离):

图 1 ,环路对消( boost 电路的续流环)

6、降低环路面积不仅降低了辐射,同时还降低了环路电感,使电路性能更佳。

7、降低环路面积要求我们精确设计各走线的回流路径。

8、当多个 PCB 通过接插件进行连接时,也需要考虑使环路面积达到最小,尤其是大 di/dt 信号、高频信号或敏感信号。最好一个信号线对应一条地线,两条线尽量靠近,必要时可以用双绞线进行连接(双绞线每一圈的长度对应于噪声半波长的整数倍)。如果大家打开电脑机箱,就可以看到主板到前面板 USB 接口就是用双绞线进行连接,可见双绞线连接对于抗干扰和降低辐射的重要性。

9、对于数据排线,尽量在排线中多安排一些地线,并使这些地线均匀分布在排线中,这样可以有效降低环路面积。

10、有些板间连接线虽然是低频信号,但由于这些低频信号中含有大量的高频噪声(通过传导和辐射),如果没有处理好,也很容易将这些噪声辐射出去。

11、布线时首先考虑大电流走线和容易产生辐射的走线。

12、开关电源通常有 4 个电流环:输入、输出、开关、续流,(如图 2 )。其中输入、输出两个电流环几乎为直流,几乎不产生 emi ,但容易受干扰;开关、续流两个电流环有较大的 di/dt ,需要注意。

图 2 , Buck 电路的电流环

13、mos ( igbt )管的栅极驱动电路通常也含有较大的 di/dt 。

14、在大电流、高频高压回路内部不要放置小信号回路,如控制、模拟电路,以避免受到干扰。

15、减小易受干扰(敏感)信号回路面积和走线长度,以减小干扰。

16、小信号走线远离大 dv/dt 信号线(比如开关管的 C 极或 D 极,缓冲 (snubber) 和钳位网络),以降低耦合,可在中间铺地(或电源,总之是常电位信号)进一步降低耦合,铺地和地平面要良好接触。小信号走线同时也要尽量远离大 di/dt 的信号线,防止感性串扰。小信号走线最好不要走到大 dv/dt 信号的下方。小信号走线背面如果能够铺地(同性质地),也能降低耦合到的噪声信号。

17、比较好的做法是,在这些大 dv/dt 、 di/dt 信号走线(包括开关器件的 C/D 极、开关管散热器)的周围和背面铺地,将上下两层铺地用过孔连接,并将此地用低阻抗走线接到公共接地点(通常为开关管的 E/S 极,或取样电阻)。这样可以减小辐射 EMI 。要注意,小信号地一定不能接到此屏蔽地上,否则会引入较大干扰。大 dv/dt 走线通常会通过互容将干扰耦合到散热器及附近的地,最好将开关管散热器接到屏蔽地上,采用表贴开关器件也会降低互容,从而降低耦合。

18、易产生干扰的走线最好不要使用过孔,它会通过过孔干扰过孔所穿过的所有层。

19、屏蔽可以降低辐射 EMI ,但由于增大了对地的电容,会使传导 EMI (共模,或非本征差模)有所增大,不过只要屏蔽层接地得当,不会增大很多。实际设计中可权衡考虑。

20、要防止共阻抗干扰,采用一点接地,电源从一点引出。

21、开关电源通常有三种地:输入电源大电流地、输出电源大电流地、小信号控制地,地的连接方法见如下示意图:




22、接地时首先应先判断地的性质,再进行连接。采样及误差放大的地通常应当接到输出电容的负极,采样信号通常应从输出电容的正极取出,小信号控制地和驱动地通常要分别接到开关管的 E/S 极或取样电阻上,防止共阻抗干扰。通常 IC 的控制地和驱动地不单独引出,此时取样电阻到上述地的引线阻抗必须尽量小,最大程度减小共阻抗干扰,提高电流采样的精度。

23、输出电压采样网络最好靠近误差放大器,而不是靠近输出端,这是由于低阻抗信号比高阻抗信号更不容易受到干扰,采样走线对要尽量相互靠近以减小拾取到的噪声。

24、布局注意电感要远离,并相互垂直,以减小互感,尤其是储能电感和滤波电感。

25、布局注意高频电容和低频电容并联使用时,高频电容靠近使用者。

26、低频干扰一般为差模( 1M 以下),高频干扰一般为共模,通常通过辐射耦合。

27、如果高频信号被耦合到输入引线,很容易形成 EMI (共模),可在输入引线接近电源处套一个磁环,如果 EMI 降低就表明存在此问题。解决此问题的方法是,降低耦合或降低电路的 EMI 。如果高频噪声没有被过滤干净而传导到输入引线,也会形成 EMI (差模),此时套磁环不能解决问题,在输入引线接近电源处串两个高频电感(对称),如果 EMI 降低就表明存在此问题。解决此问题的方法是改善滤波,或采用缓冲、钳位等手段减小高频噪声的产生。

28、差模和共模电流的测量:


29、EMI 滤波器要尽量靠近进线,进线的走线要尽量短,尽量减小 EMI 滤波器前后级的耦合。进线最好用机壳地进行屏蔽(方法如上所述)。输出 EMI 滤波器也要作类似处理。尽量拉开进线和高 dv/dt 信号走线的距离,在布局上要加以考虑。

来源:网络转载

围观 53
订阅 RSS - layout