热电偶

在日常工作当中经常遇到使用温度测量仪表,热电阻与热电偶同为温度测量仪表,同一个测温地点我们选择热电阻还是选择热电偶呢?今天我们来全面剖析一下。

热电偶的结构

热电偶前端接合的形状有 3 种类型,如下图所示。可根据热电偶的类型、 线径、使用温度,通过气焊、对焊、电阻焊、电弧焊、银焊等方法进行接合。


在工业应用中为了便于安装及延长热电偶的使用寿命,通常使用外加套管的方式。套管一般分为保护管型和铠装型。


在工业应用中为了便于安装及延长热电偶的使用寿命,通常使用外加套管的方式。套管一般分为保护管型和铠装型。


铠装型热电偶

铠装热电偶的测量原理与带保护管的热电偶相同。它使用纤细的金属管 ( 称为套管)作为上图中绝缘管 (陶瓷) 的替代品,并使用氧化镁 (MgO)等粉末作为绝缘材料。

由于其外径较细且容易弯曲, 所以最适合用来测量物体背面与狭小空隙等处的温度。此外,与带保护管的热电偶相比,其反应速度更为灵敏。

铠装热电偶的套管外径范围较广,可以拉长加工为 8.0mmф到 0.5mmф的各种尺寸。芯线拉伸得越细,常用温度上限越低。

如 K型热电偶,套管外径 0.5mmф的常用温度上限是 600℃,8.0mmф的是 1050℃。


热电阻的结构

如下图所示, 热电阻的元件形状有 3 种,目前陶瓷封装型占主导地位。陶瓷封装型用于带保护管的热电阻以及铠装热电阻。

陶瓷与玻璃封装型的铂线裸线直径为几十微米左右,云母板型的约为 0.05mm。引线则使用比元件线粗很多的铂合金线。

热电阻元件的种类


带保护管的热电阻图例


铠装热电阻


区别

1.虽然都是接触式测温仪表,但它们的测温范围不同。热电偶使用在温度较高的环境,因它们在中,低温区时输出热电势很小 (查表可以看一下 ),当电势小时,对抗干扰措施和二次表和要求很高,否则测量不准,还有,在较低的温度区域, 冷端温度的变化和环境温度的变化所引起的相对误差就显得很突出,不易得到全补偿。

这时在中低温度时,一般使用热电阻测温范围为200~500,甚至还可测更低的温度 (如用碳电阻可测到 1K 左右的低温 ).现在正常使用铂热电阻Pt100,(也有Pt50,100和 50代表热电阻在0度时的阻值,在旧分度号中用BA1,BA2来表示,BA1 在0度时阻值为46欧姆,在工业上也有用铜电阻,分度号为CU50和CU100,但测温范围较小,在50~150之间,在一些特殊场合还有铟电阻,锰电阻等)

2.热电偶测量温度的基本原理是热电效应, 二次表是一个检伏计或为了提高精度时使用电子电位差计。电阻是基于导体和半导体的电阻值随温度而变化的特性而工作的, 二次表是一个不平衡电桥。

3.由热电偶测温原理可知,只有在其冷端温度恒定时,被测温度才与热电势成单值函数关系 .在实际使用中,就用一种热电特性与相应热电偶特性相似的廉价的连接导线 (也称为补偿导线),使热电偶冷端引伸到温度相对恒定的地方 (最好为0度),如用铜--康铜做补偿导线来引申镍铬 ---镍硅热电阻 。因此,热电偶到二次表延长线是两根。

热电阻与二次表之间是用铜导线连接的,为了减小环境变化引起的测量误差,一般均采用三线制接法, 其中有两根导线将热电阻串联于相邻的两个桥臂上,另一根导线是引来电源 ,使用时要求每根导线的电阻值与调整电阻之和都保证为5 欧姆( ±0.01)。

工作中的现场判断

1.热电偶:热电偶有正负极,补偿导线也有正负之分。首先保证连接, 配置确。在运行中,常见的有短路、断路、接触不良 (有万用表可判断 )和变质 (根据表面颜色来鉴别),检查时,要使热电偶与二次表分开。

我在实践中判断的方法,供大家参考:用工具短接二次表上的补偿线,表指示室温 (不是的话,表坏 ),再短接热电偶接线端子,表指示热电偶所在的环境温度 (不是,补偿线有故障 ),再用万用表 mv档大体估量热电偶的热电势 (如正常,请检查工艺 )。

2.热电阻:不外乎短路、和断路、用万用表可判断。在运行中,怀疑短路,只要将电阻端拆下一个线头,看显示仪表,如到最大,热电阻短路、回零、导线短路,保证正常连接和配置时,表值显示低或不稳,保护管可能性进水了。

显示最大,热电阻断路,显示最小,短路 。一般来说,温度在 300 度以下的用热电阻, 300度以上的用热电偶。随着温度的变化,热电阻的阻值会发生变化,热电偶的热电势会发生变化。

热电阻目前都采用铜热电阻和铂热电阻, 根据0度时热电阻值的不同又分为不同的分度号,如PT100,PT1000,CU50 等,以PT100为例,PT 代表铂,100代表0度时热电阻的阻值是100欧姆。

热电偶目前大体上有 K,B,S等分度号,分别代表不同的材质,以用于不同的温度范围。例如:K 型为镍铬 -镍硅材材,一般测量 0-800 度,B 型为铂铑 30-铂铑 6,一般测量 800-1600度。

热电偶的测量原理是什么?

热电偶工作原理是基于赛贝克( seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。热电偶由两根不同导线(热电极)组成,它们的一端是互相焊接的,形成热电偶的测量端(也称工作端)。

将它插入待测温度的介质中;而热电偶的另一端 (参比端或自由端)则与显示仪表相连。如果热电偶的测量端与参比端存在温度差,则显示仪表将指出热电偶产生的热电动势。

热电阻的测量原理是什么?

热电阻是利用金属导体或半导体有温度变化时本身电阻也随着发生变化的特性来测量温度的, 热电阻的受热部分 (感温元件) 是用细金属丝均匀地绕在绝缘材料做成的骨架上或通过激光溅射工艺在基片形成。

当被测介质有温度梯度时, 则所测得的温度是感温元件所在范围内介质层的平均温度。

什么是铠装热电偶,有什么优点?

在 IEC1515 的标准中名称为《 mineral insulated thermocouple cable 》,即无机矿物绝缘热电电偶缆。将热电极、 绝缘物和护套通过整体拉制而形成的, 外表面好像是被覆一层 “铠装",故称为铠装热电偶。

同一般装配式热电偶相比,具有耐压高、可弯曲性能好、抗氧化性能好及使用寿命长等优点。

热电偶的分度号有哪几种 ?有何特点?

热电偶的分度号有主要有 S、R、B、N、K、E、J、T 等几种。其中 S、R、B 属于贵金属热电偶, N、K、E、J、T 属于廉金属热电偶。

S分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度 1400℃,短期 1600℃。在所有热电偶中, S分度号的精确度等级最高,通常用作标准热电偶;

R 分度号与 S分度号相比除热电动势大 15%左右,其它性能几乎完全相同;}

B 分度号在室温下热电动势极小, 故在测量时一般不用补偿导线。它的长期使用温度为 1600℃,短期 1800℃。可在氧化性或中性气氛中使用,也可在真空条件下短期使用。

N 分度号的特点是 1300℃下高温抗氧化能力强,热电动势的长期稳定性及短期热循环的复现性好,耐核辐照及耐低温性能也好, 可以部分代替 S 分度号热电偶;

K 分度号的特点是抗氧化性能强, 宜在氧化性、惰性气氛中连续使用,长期使用温度 1000℃,短期 1200℃。在所有热电偶中使用最广泛;

E 分度号的特点是在常用热电偶中,其热电动势最大,即灵敏度最高。宜在氧化性、惰性气氛中连续使用,使用温度 0-800℃;

J分度号的特点是既可用于氧化性气氛(使用温度上限 750℃),也可用于还原性气氛(使用温度上限 950℃),并且耐 H2 及 CO 气体腐蚀,多用于炼油及化工;

T 分度号的特点是在所有廉金属热电偶中精确度等级最高,通常用来测量 300℃以下的温度。

N 型热电偶与 K 型热电偶相比有哪些优缺点?

N型热电偶的优点:
-高温抗氧化能力强,长期稳定性强。K 型热电偶镍铬的正极中 Cr、Si 元素择优氧化引起合金成分不均匀及热电动势漂移等,在 N 型热电偶增加 Cr、Si 含量,

使镍铬合金的氧化模式由内氧化转变为外氧化,致使氧化反应仅在表面进行;
-低温短期热循环稳定性好,且抑制了磁性转变;
-耐核辐射能力强。N 型热电偶取消了 K 型中的易蜕变元素 Mn、Co,使抗中子辐照能力进一步加强;

-在 400~1300℃范围内, N 型热电偶的热电特性的线性比 K 型好。

N型热电偶的缺点:
-N型热电偶的材料比K型硬,较难加工;
-价格相对较贵。N型热电偶的热膨胀系数要比不锈钢低 15%,因此N型铠装热电偶的外套管应采用 NiCrSi/NiSi 合金;在 -200~400℃范围内非线性误差较大。

热电阻的引出线方式有几种?都有什么影响?

热电阻的引出线方式有3种:即2线制、3 线制、4 线制。
2线制热电阻配线简单, 但要带进引线电阻的附加误差。因此不适用制造 A级精度的热电阻,且在使用时引线及导线都不宜过长。

3线制可以消除引线电阻的影响,测量精度高于2线制。作为过程检测元件,其应用最广。

4线制不仅可以消除引线电阻的影响,而且在连接导线阻值相同时,还可以消除该电阻的影响。在高精度测量时,要采用4线制。

如何选择热电偶和热电阻?

根据测温范围选择:500℃以上一般选择热电偶, 500℃以下一般选择热电阻;
根据测量精度选择:对精度要求较高选择热电阻,对精度要求不高选择热电偶;

根据测量范围选择:热电偶所测量的一般指 “点"温,热电阻所测量的一般指空间平均温度。

转自:电子电路,转载此文目的在于传递更多信息,版权归原作者所有。

围观 554

1、热电偶(thermocouple)测量原理

热电偶是测量温度的一种仪器。利用两种不同的导体或半导体连接成闭合回路,焊接端称作热端(或工作端),与导线连接的一端称作冷端。如果两端所处的温度不同(热端为 t,冷端为 t0,t > t0)则在该回路内产生热电动势E(简称热电势),此种现象称为“热电效应”(塞贝克效应)。热电偶就是利用热电效应的原理而制成的测量温度的仪器。热电偶测量温度系统由热电偶(感温元件),毫伏测量仪表及连接导线(铜线及补偿导线)所组成。在热电偶材料已定时。其热电势E只是被测量温度t的函数,用仪表测得E的数值后,即可知道被测温度的大小。


2 热电偶特点

测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。

测量范围广。常用的热电偶从-50℃~+1600℃均可连续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。

构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。

3、热电偶的分度号

标准化热电偶,按IEC国际标准生产。热电偶的分度号有主要有S、R、B、N、K、E、J、T等几种。其中S、R、B属于贵金属热电偶, N、K、E、J、T属于廉金属热电偶。

S分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃,短期1600℃。在所有热电偶中,S分度号的精确度等级最高,通 常用作标准热电偶;

R分度号与S分度号相比除热电动势大15%左右,其它性能几乎完全相同。

B分度号在室温下热电动势极小,故在测量时一般不用补偿导线。它的长期使用温度为1600℃,短期1800℃。可在氧化性或中性气氛中使用,也可在真空条件下短期使用。

N分度号的特点是1300℃下高温抗氧化能力强,热电动势的长期稳定性及短期热循环的复现性好,耐核辐照及耐低温性能也好,可以部分代替S分度号热电偶;

K分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃,短期1200℃。在所有热电偶中使用最广泛;

E分度号的特点是在常用热电偶中,其热电动势最大,即灵敏度最高。宜在氧化性、惰性气氛中连续使用,使用温度0-800℃;

J分度号的特点是既可用于氧化性气氛 (使用温度上限750℃),也可用于还原性气氛 (使用温度上限950℃),并且耐H2及CO气体腐蚀,多用于炼油及化工;

T分度号的特点是在所有廉金属热电偶中精确度等级最高,通常用来测量300℃以下的温度。


4、热电偶冷端的温度补偿

理论上,热电偶是冷端以0℃为标准进行测量的。然而,通常测量时仪表是处于室温之下的,但由于冷端不为0℃,造成了热电势差减小,使测量不准,出现误差。因此为减少误差所做的补偿措施就是冷端温度补偿。

因此,常采用一些措施来消除冷端温度变化所产生的影响,如冷端恒温法、冷端温度校正法、补偿导线法、补偿电桥法。

(1)冷端恒温法

一般热电偶定标时冷端温度以0℃为标准。因此,常常将冷端置于冰水混合物中,使其温度保持为恒定的0℃。在实验室条件下,通常把冷端放在盛有绝缘油的试管中,然后再将其放入装满冰水混合物的保温容器中,是冷端保持0℃。

(2)冷端温度校正法

由于热电偶的温度分度表是在冷端温度保持在0℃的情况下得到的,与它配套使用的测量电路或显示仪表又是根据这一关系曲线进行刻度的,因此冷端温度不等于0℃时,就需对仪表指示值加以修正。如冷端温度高于0℃,但恒定于t0℃,则测得的热电势要小于该热电偶的分度值,为求得真实温度,可利用中间温度法则,即用下式进行修正:

E(t,0)= E(t,t1)+ E(t1,0)

(3)补偿导线法

由于热电偶的材料一般都比较贵重 (特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线(compensating lead)把热电偶的冷端 (自由端)延伸到温度比较稳定的控制室内,连接到仪表端子上。这是一种专用导线,有正、负极性。选择某一对导线,当其与某种热电偶的热电特性小于100℃的范围里一致时,只要热电偶冷端小于100℃,并将它与热电偶冷端连结,则相当于将热电偶延长,这样便于热电偶的冷端温度处理,如果所移的冷端仍处于温度较高或有波动的地方,则此时的补偿导线就失去使用意义。

补偿导线在使用中注意事项

① 补偿导线的选择

补偿导线一定要根据所使用的热电偶种类和所使用的场合进行正确选择。例如,k型偶应该选择k型偶的补偿导线,根据使用场合,选择工作温度范围。通常kx工作温度为-20~100℃,宽范围的为-25~200℃。普通级误差为±2.5℃,精密级为±1.5℃。

② 接点连接

与热电偶接线端2个接点尽可能近一点,尽量保持2个接点温度一致。与仪表接线端连接处尽可能温度一致,仪表柜有风扇的地方,接点处要保护不要使得风扇直吹到接点。

③ 使用长度

因为热电偶的信号很低,为微伏级,如果使用的距离过长,信号的衰减和环境中强电的干扰偶合,足可以使热电偶的信号失真,造成测量和控制温度不准确,在控制中严重时会产生温度波动。

根据我们的经验,通常使用热电偶补偿导线的长度控制在15米内比较好,如果超过15米,建议使用温度变送器进行传送信号。温度变送器是将温度对应的电势值转换成直流电流传送,抗干扰强。

④ 布线

补偿导线布线一定要远离动力线和干扰源。在避免不了穿越的地方,也尽可能采用交叉方式,不要平行。

⑤ 屏蔽补偿导线

为了提高热电偶连接线的抗干扰性,可以采用屏蔽补偿导线。对于现场干扰源较多的场合,效果较好。但是一定要将屏蔽层严格接地,否则屏蔽层不仅没有起到屏蔽的作用,反而增强干扰。

(4)补偿电桥法

补偿电桥法是利用不平衡电桥产生的电势来补偿热电偶因冷端温度变化而引起的热电势变化值。补偿电桥现已标准化。不平衡电桥(即补偿电桥)是由电阻R1、R2、R3和RCu组成。其中R1=R2=R3=1 ;Rs是用温度系数很小的锰铜丝绕制而成的;RCu是有温度系数较大的铜线绕制而成的补偿电阻,0℃时,RCu=1;Rs的值可根据所选电偶的类型计算确定。此桥串联在热电偶测量回路中,热电偶冷端与电阻RCu感受相同的温度,在某一温度下(通常取0℃)调整电桥平衡,使R1=R2=R3=RCu。当冷端温度变化时,RCu随温度改变,破坏了电桥平衡,产生一不平衡电压△U,此电压则与热电势相叠加,一起送入测量仪表。适当选择Rs的数值,可是电桥产生的不平衡电压△U在一定温度范围内基本上能补偿由于冷端温度变化而引起的热电势变化值。这样,当冷端温度有一定变化时,仪表仍然可给出正确的温度示值。

(5)软件处理法

对于计算机系统,不必全靠硬件进行热电偶冷端处理。例如冷端温度恒定但不为0℃的情况,只需在采样后加一个与冷端温度对应的常数即可。

对于T0经常波动的情况,可利用热敏电阻或其它传感器把T0信号输入计算机,按照运算公式设计一些程序,便能自动修正。后一种情况必须考虑输入的采样通道中除了热电动势之外还应该有冷端温度信号,如果多个热电偶的冷端温度不相同,还要分别采样,若占用的通道数太多,宜利用补偿导线把所有的冷端接到同一温度处,只用一个冷端温度传感器和一个修正T0的输入通道就可以了。冷端集中,对于提高多点巡检的速度也很有利。

5、正确使用

正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。安装不正确,热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。

(1)安装不当引入的误差

如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。

(2)绝缘变差而引入的误差

如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。

(3)热惰性引入的误差

由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,最有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。

(4)热阻误差

高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。因此,应保持热电偶保护管外部的清洁,以减小误差。

6、故障处理

热电偶输入产生故障判别法:

按照仪表接线图进行正确接线通电后,仪表先是显示仪表的热电偶分度号,接着显示仪表量程范围,再测仪表下排的数码管显示设定温度,仪表上排数码管显示测量温度。若仪表上排数码管显示不是发热体的温度,而显示“OVER”、“0000”或“000”等状况,说明仪表输入部位产生故障,应作如下试验:

(1)把热电偶从仪表热电偶输入端拆下,再用任何一根导线把仪表热电偶输入端短路。通电时,仪表上排数码管显示值约为室温时,说明热电偶内部连线开路,应更换同类型热电偶。若还是以上所说的状况,说明仪表在运输过程中,仪表的输入端被损坏,要调换仪表。

(2)把上述故障仪表的热电偶拆去,换用旁边运行正常的同种分度号仪表上接入的热电偶,通电后,原故障仪表上排数码管显示发热体温度时,说明热电偶连线开路,更换同类型热电偶。

(3)把有故障的热电偶从仪表上拆下来,用万用表放在测量欧姆(R)*1档,

用万用表两表棒去测热电偶两端,若万用表上显示的电阻值很大,说明热电偶内部连接开路,更换同类型热电偶。否则有一定阻值,说明仪表输入端有问题,应更换仪表。

(4)按照仪表接线图接线正确,若仪表通电后,仪表上排数码管显示有负值等现象,说明接入仪表的热电偶“+”与“—”接错而造成的。只要重新调换一下即可。

(5)接线正确仪表在运行时,仪表上排数码管显示的温度与实际测量的温度相差40℃~70℃。甚至相差更大,说明仪表的分度号与热电偶的分度号搞错。按热电偶分度号B、S、K、E等热电偶的温度与毫伏(MV)值的对应关系来看,同样温度的情况下,产生的毫伏值(MV)B分度号最小,S分度号次小,K分度号较大,E分度号最大,按照此原理来判别。

常见故障分析及处理:


来源:北极星火电人

围观 526

正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。安装不正确,热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。

1、安装不当引入的误差

如热电偶安装的位置及插入深度不能反映炉膛的真实温度等,换句话说,热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍;热电偶的保护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温的准确性;热电偶冷端太靠近炉体使温度超过100℃;热电偶的安装应尽可能避开强磁场和强电场,所以不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差;热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。

2、绝缘变差而引入的误差

如热电偶绝缘了,保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。

3、热惰性引入的误差

由于热电偶的热惰性使电气的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。所以应尽可能采用热电极较细、保护管直径较小的热电偶。测温环境许可时,甚至可将保护管取去。由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。当用时间常数大的热电偶测温或控温时,电气显示的温度虽然波动很小,但实际炉温的波动可能很大。为了准确的测量温度,应当选择时间常数小的热电偶。时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,最有效的办法是尽量减小热端的尺寸。使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。

4、热阻误差

高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。因此,应保持热电偶保护管外部的清洁,以减小误差。

本文转自:微信号 - 蒙晖仪表(moho-china),转载此文目的在于传递更多信息,版权归原作者所有。

围观 370

热电偶在温度测量方面是使用最久、最广泛的元件之一。在恶劣环境下测量温度的应用通常都会用到热电偶,比如锅炉、烤箱以及汽车和石化应用等。热电偶能够在-200°C至+2500°C的范围内测量温度,与其他传感器相比,热电偶可以更快地对温度变化作出反应。同时,优异的抗冲击和抗振动性也是热电偶被广泛采用的一个原因。

那么,什么是热电偶呢?热电偶由两根不同材料的金属导线组成,它们的一端连接在一起。接合在一起的这端通常叫做“热”端,而开口的那一端叫做“冷”端。如图1所示,两根导线之间的差分电压可用于计算出热端的温度。

热电偶信号调理——挑战与解决方案
图1:热电偶简化图

所有的热电偶都必须测量毫伏级的信号变化。最常见的热电偶类型有J、K和T,它们的室温电压分别为52 μV/°C、41 μV/°C和41 μV/°C。由于它们的电压信号很小,因而从系统噪声中提取信号是比较困难的。同时,热电偶输出与温度并非线性关系,因此需要使用高阶方程来精确计算温度。此外,热电偶测量的准确性和冷端温度测量的准确性息息相关,这使得已经相当复杂的系统变得更为复杂。通常来说,热电偶信号调理是热电偶解决方案中所需投资最大的部分。

测量选项

冷端产生的差分电压取决于热端和冷端之间的温差。因此,必须知道冷端的温度才能获得准确的整体温度读数。这就是所谓的“冷端补偿(CJC)”。热电偶解决方案的整体温度准确性受限于其CJC的温度准确性。

如今,有很多解决方案可以进行冷端温度测量,如RTD、热敏电阻和硅基IC温度传感器。热敏电阻具有响应快速和封装小巧的特点,但是它们需要线性化,温度范围较宽时准确性也受到影响。同时,它们还需要励磁电流,会产生自发热并加大功耗,进而限制了它们在许多便携式或电池供电应用中的使用。电阻温度检测器(RTD)则具备准确性、稳定性与合理的线性度。然而,封装尺寸和成本问题让它们在许多应用中受限。而硅基IC温度传感器现在的温度精度超过了0.5°C。硅基IC是一种简单的器件,只需极少的外部电路或热设计知识即可实现。近年来,凭借这种简易性以及提升的温度准确性,此类器件的应用日益普及。

一般来说,分立式热电偶解决方案使用仪表放大器(INA)来提取热电偶电压,而INA会排除掉该器件各输入端的公共电压。因为大部分的噪声都存在于各热电偶引线上,因此INA可以有效地过滤噪声。

现在市场上有很多种仪表放大器。传统的INA拓扑结构将两个运算放大器作为增益级,然后将增益信号输送给第三个配置为差分放大器的运算放大器,如图2所示。

图2: 三运放构成的仪表放大器

该电路的增益用单个电阻Rgain来设置。尽管这种拓扑结构可以实现DC条件下高于80 dB的共模抑制比(CMRR),但CMRR随频率的增加会大幅降低。如果这个器件的用途之一是抑制高频噪声的话,就有问题了。使用单个电阻方法,需仔细斟酌。将内部电阻调节为一个比率而不是一个绝对值。可是,不知道内部电阻的绝对值将使得电路增益难以确定。单个电阻相对于外部增益电阻的温度系数将是不同的,这会造成一定温度范围内额外的增益误差。

新架构对电流进行叠加而非电压叠加,改善了更高频率条件下的共模抑制。如图3所示,Microchip旗下的MCP6N16器件就是这样的一个实例。该架构生成的电流使跨RG两端的电压等于从VIP到VIM之间的差分电压。

热电偶信号调理——挑战与解决方案
图3:MCP6N16仪表放大器功能框图

图3:MCP6N16仪表放大器功能框图

Vout = (VIP - VIM)*(1 + RF/RG)

请注意:这里使用了两个外部电阻来设置增益,消除了之前提到的采用单个电阻方法相关的顾虑。

总之,与其他温度测量系统相比,热电偶信号调理更为复杂。现代INA架构及硅基IC温度传感器的进步解决了许多与热电偶相关的历史性设计挑战。此外,几大芯片制造商也集成了许多用于CJC的模拟、混合信号与温度传感器件,在提升系统整体性能的同时进一步大大减少了设计工作。

来源: microchip

围观 597
订阅 RSS - 热电偶