控制器

系列首款产品可实现3相直流无刷电机的无感控制

2024328——东芝电子元件及存储装置株式会社(“东芝”)今日宣布,开始批量出货带有嵌入式微控制器(MCU)的SmartMCD™系列栅极驱动IC[1]。首款产品“TB9M003FG”适用于汽车应用中使用的无感控制3相直流无刷电机的水泵和油泵、风扇和鼓风机等设备。

1.jpg

TB9M003FG将微控制器(Arm® Cortex®-M0)、闪存、电源控制功能和通信接口功能统一集成到栅极驱动IC中,控制和驱动3相直流无刷电机中的N通道功率MOSFET。这一集成将减小系统尺寸和组件数量,同时实现各种汽车电机应用中的先进和复杂电机控制。此外,新产品还搭载了东芝自研的矢量引擎,以及用于无感正弦波控制的硬件,既减轻了微控制器的负载,同时降低了软件代码大小。

基于TB9M003FG的参考设计“使用SmartMCD™的汽车车身电子电机驱动电路”已在东芝官网上线。

电动汽车(xEV)市场的扩大带来了电气化、零部件集成化、电子控制单元(ECU)小型化和低噪音电机等市场需求。为了满足此需求,新产品通过将微控制器集成到栅极驱动IC中,助力缩小ECU器件尺寸,并通过使用矢量控制使电机更安静。

基于TB9M003FG的参考设计“使用SmartMCD的汽车车身电子电机驱动电路”

电路板外观.jpg

电路板外观

简易方框图.png

简易方框图

应用:

汽车

-水泵

-油泵

-风扇

-鼓风机等

特性:

-用于3相直流无刷电机的无感控制栅极驱动IC(内置电荷泵电路)

-32位MCU(Arm® Cortex®-M0),工作频率:40 MHz(内置低速/高速振荡器)

-内置存储器

  闪存:64 K字节;ROM:12 K字节;RAM:4 K字节

-内置矢量引擎和可编程电机驱动电路

-内置单电阻电流检测放大器、12位A/D转换器和10位A/D转换器

-各种检测电路

  电流限制器、过电流、Vbat过压、过温等

-通信方式:LIN和PWM通信可选,UART

-AEC-Q100(0级),车载电子元件合格认证

主要规格:

(除非另有说明,Ta=25 °C)

器件型号

TB9M003FG

支持电机

3相直流无刷电机

主要功能

单电阻电流检测放大器、无传感器方式、矢量控制、方波控制

主要错误检测

欠压、过压、外部功率MOSFET开路/短路故障、过温

绝对最大额定值

供电电压Vbat(V)

–0.3至+40

工作

范围

供电电压Vbat(V)

6至18

工作温度

Topr(°C)

Ta=–40至150

Tj=–40至175

封装

名称

P-HTQFP48-0707-0.50-001

尺寸(mm)

典型值

9.0Í9.0

可靠性

AEC-Q100(0级)认证





注:

[1] 栅极驱动IC:用于驱动MOSFET

如需了解新产品的更多信息,请访问以下网址:

TB9M003FG

https://toshiba-semicon-storage.com/cn/semiconductor/product/automotive-devices/detail.TB9M003FG.html

如需了解东芝车载电机驱动产品的更多信息,请访问以下网址:

模拟器件

https://toshiba-semicon-storage.com/cn/semiconductor/product/automotive-devices.html#%E6%A8%A1%E6%8B%9F%E5%99%A8%E4%BB%B6

关于东芝电子元件及存储装置株式会社

东芝电子元件及存储装置株式会社是先进的半导体和存储解决方案的领先供应商,公司累积了半个多世纪的经验和创新,为客户和合作伙伴提供分立半导体、系统LSI和HDD领域的杰出解决方案。

公司22,200名员工遍布世界各地,致力于实现产品价值的最大化,东芝电子元件及存储装置株式会社十分注重与客户的密切协作,旨在促进价值共创,共同开拓新市场,公司现已拥有超过8,598亿日元(62亿美元)的年销售额,期待为世界各地的人们建设更美好的未来并做出贡献。

如需了解有关东芝电子元件及存储装置株式会社的更多信息,请访问以下网址:https://toshiba-semicon-storage.com

围观 7

前文提要:

一、段码式液晶显示屏LCD结构和显示原理

二、瑞萨MCU内置的LCD控制器/驱动器

1、LCD控制器/驱动器框图

2、LCD控制器/驱动器的驱动波形

3、LCD控制器/驱动器的驱动电压

LCD驱动电压VL1、VL2、VL3、VL4的提供,分为内部升压、电容分割和外部电阻分割。

内部升压

如R7F0C001G/L、R7F0C002G/L内置用于LCD驱动电源的内部升压电路。通过外接内部升压电路的电容器(0.47μF ±30%),生成LCD驱动电压。内部升压方式只能使用1/3偏压法或者1/4偏压法。内部升压方式的LCD驱动电压和器件本身不是同一个电源,因此与VDD的变化无关,能提供固定的电压。能通过设定LCD升压控制寄存器(VLCD)来调整对比度。

1.png

电容分割

如R7F0C001G/L、R7F0C002G/L内置用于驱动电源的电容分割电路。通过外接电容分割电路的电容器(0.47μF ±30%),生成LCD驱动电压。电容分割方式只能使用1/3偏压法。和外部电阻分割方式不同,电容分割方式没有电流流过,因此能减小消费电流。

2.png

外部电阻分割方式

3.png

4、LCD控制器/驱动器时钟控制

4.png

5、LCD控制器/驱动器的数据驱动显示

能从升压电路运行时生成的16种基准电压(调整对比度)中选择。

5.png

6、LCD控制器/驱动器的数据驱动显示

当用于静态、2个时间片、3个时间片或者4个时间片时,如R7F0C001G/L、R7F0C002G/L能通过设定BLON位和LCDSEL位,从以下3种选择LCD显示数据寄存器:

  • A图形区(LCD显示数据寄存器的低4位)的数据显示

  • B图形区(LCD显示数据寄存器的高4位)的数据显示

  • 交替显示A图形区和B图形区的数据(实时计数器(RTC)的固定周期中断时序对应的闪烁显示)

注意在使用8个时间片时,不能选择LCD显示数据寄存器(A图形、B图形或者闪烁显示)。

6.png

闪烁显示(A图形区和B图形区的数据的交替显示)R7F0C001G/L,R7F0C002G/L例子。

当BLON位为“1”时,对应实时计数器(RTC)的固定周期中断(INTRTC)时序,进行A图形区和B图形区的数据交替显示。当LCD闪烁显示时,必须给与A图形区的位对应的B图形区的位设定反相值(ex. 将F0400H的bit0置“1”,在闪烁显示时将F0400H的bit4置“0”);当LCD不闪烁显示时,必须设定相同值(ex. 将F0402H的bit2置“1”,在点灯显示时将F0402H的bit6置“1”)。

显示的切换时序如下所示。

7.png

三、瑞萨MCU内置LCD控制器/驱动器的驱动工作模式待机功耗实测

8.png

9.jpg

四、瑞萨内置LCD控制器/驱动器的MCU系列

可以点击下方链接下载数据手册,了解更详细的规格说明:

R7F0C001G/L、R7F0C002G/L用户手册硬件篇、RL78/L12、RL78/L13、RL78/L1A、RL78/L1C、RA4M1:https://www.renesas.cn/cn/zh

五、瑞萨内置LCD控制器/驱动器的MCU系列评估板

点击链接:https://www.renesas.cn/cn/zh

相关阅读:瑞萨MCU内置LCD控制器/驱动器漫谈(上)

来源:瑞萨嵌入式小百科(作者:Leo Liao

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 20

前 言

在很多应用场景下可能需要使用段码式液晶显示屏LCD,如:家用电器、工业设备、仪器仪表、楼宇自动化设备、医用仪器、穿戴设备等等。这不仅是因为段码式液晶显示屏LCD具有显示美观、成本优势、功耗低等优点,而且现在很多MCU都集成了LCD驱动模块,使得开发变得更容易。根据不同电压、段位数、A/B驱动波形等广泛应用的需求,瑞萨集成了LCD驱动模块,不同系列的MCU可使用该模块从而匹配其应用。

一、段码式液晶显示屏LCD结构和显示原理

段码式液晶显示屏LCD内部晶体在静电场的功效下,晶体的排列方向会发生偏转,因而改变其透光性,从而可以看到显示的内容。LCD有一个偏转阀值,当LCD两端的电压高于该阀值时,则显示内容;而低于该阀值时,则不显示。

一般段码式液晶显示屏LCD有三个主要参数:工作中电压、Duty(相匹配COM数)和BIAS(偏压,相匹配阀值),例如,3.0V、1/4Duty、1/3BIAS表明LCD的工作中电压为3.0V,有4个COM,阀值大概是1.1V(3.0/3=1.0)。

1.png

当加在某段LCD两端的电压大于1.0V时显示,反之,不显示。但是,LCD对于驱动电压的反应不是很明显,例如加1.0V电压的时候,可能会微弱显示,这就是通常说的“鬼影”。因此,要保证驱动LCD显示的时候,加在LCD两端的电压要比阀值电压大得比较多,而不显示的时候,则要比阀值电压小得比较多。

需要注意的是,LCD的两端是不能加直流电压的,否则时间稍长会危害段码式液晶显示屏LCD晶体分子结构的电化学特点,造成显示实际效果模糊不清,使用期限降低的不良影响,其毁灭性不能修复,这就要求保证加在LCD两端的驱动电压的平均电压为0。所以,LCD使用分割扫描法,在任何时候只有一个COM扫描有效,其余的COM处于无效状态。

一个好的段码式液晶显示屏LCD控制器/驱动器,应该满足:

  • 能提供不同数量的COM、Duty(相匹配COM数)和BIAS(偏压,相匹配阀值),满足不同规格LCD屏的驱动

  • 能够提供多种分压方式,提供内部分压,减少外围电路分压的元器件

  • 能够提供内部Boost升压,满足一些电池供电,电池电压下降时,亮度还可以保持

  • 能够提供内部基准电压稳压,避免分压不准导致显示出现“鬼影”

  • 能够提供多个不同的基准电压选择,可以调整对比度

  • 能够提供多种不同分割扫描法、驱动波形,满足灵活选择

  • 能够不同的时钟源和不同分割扫描帧率的选择,满足不同应用低功耗的要求

瑞萨MCU内置的LCD控制器/驱动器不但满足上面的规格,而且还提供其他优点功能:

  • 提供不同的时钟源选择,可选择外部副时钟32.768KHz,也可选择MCU内部低速或高速时钟

  • 提供显示数据寄存器,能通过自动读取显示数据寄存器进行段信号SEG和公共信号COM的自动输出

  • 提供时间间隔闪烁功能,方便易用

二、瑞萨MCU内置的LCD控制器/驱动器

1、LCD控制器/驱动器框图

图1为集成到瑞萨自有16bits RL78系列核MCU中的LCD控制器/驱动器,图2集成瑞萨32bits RA4M1系列Arm核MCU中的LCD控制器/驱动器,两者主要区别是LCD控制器/驱动器的工作时钟选择不同,RA4M1系列还可支持选择内部高速时钟。

2.png

图1 R7F0C001/R7F0C002/L12/L13/L1A/L1C LCD控制器/驱动器

3.png

图2 RA4M1 LCD控制器/驱动器

①外围允许寄存器0(PER0):在将副系统时钟(fSUB)用于LCD控制器/驱动器时设定。

②LCD模式寄存器0(LCDM0):LCD驱动电压生成电路、显示波形(A/B)和显示的时间片DUTY的选择。

③LCD模式寄存器1(LCDM1):此寄存器允许或者禁止显示运行,允许或者停止升压电路和电容分割电路的运行以及设定显示数据区和低电压模式。

④运行速度模式控制寄存器(OSMC):通过停止不需要的时钟功能来降低功耗。

⑤LCD时钟控制寄存器0(LCDC0):设定LCD源时钟和LCD时钟的寄存器,通过LCD时钟和时间片决定帧频。

⑥记忆性液晶控制寄存器(MLCD):控制记忆性液晶波形。

⑦LCD升压电平控制寄存器(VLCD):能从升压电路运行时生成的16种基准电压(调整对比度)中选择。

⑧LCD输入切换控制寄存器(ISCLCD):设定CAPL/P126、CAPH/P127、VL3/P125引脚作为LCD功能运行的期间防止贯通电流的流入。

2、LCD控制器/驱动器的驱动波形

驱动波形包括COM端口波形、SEG端口波形、COM和SEG之间电压差波形,当各画素对应的COM和SEG的电位差高于一定电压(LCD驱动电压VLCD,也就是阀值电压)时,LCD显示屏的各画素就点灯。如果电位差低于VLCD,各画素就熄灯。

COM端口波形

根据设定的时间片,如表所示的顺序为公共信号的选择时序,并且以其为一个周期进行重复运行。在静态模式的情况下,COM0~COM3输出相同的信号。

4.png

SEG端口波形

SEG信号对应LCD显示数据寄存器,在8个时间片方式的情况下,各显示数据寄存器的bit0~bit7对应COM0~COM7。与公共信号输出的各时序同步,读数据存储器的数据。如果各位的内容为“1”,就在转换为选择电压后输出到段引脚(SEG4~SEG38)。如果各位的内容为“0”,就在转换为非选择电压后输出到段引脚(SEG4~SEG38)。

在不是8个时间片方式的情况下,在A图形区中各显示数据寄存器的bit0~bit3对应COM0~COM3,在B图形区中各显示数据寄存器的bit4~bit7对应COM0~COM3。与公共信号输出的各时序同步,读数据存储器的数据。如果各位的内容为“1”,就在转换为选择电压后输出到段引脚(SEG0~SEG38)。如果各位的内容为“0”,就在转换为非选择电压后输出到段引脚(SEG0~SEG38)。

因此,必须先确认LCD显示数据寄存器使用的LCD显示屏的前面电极(对应SEG信号)和背面电极(对应COM信号)是如何组合形成显示图形的,然后给显示数据寄存器写与显示图形一一对应的位数据。

COM信号和SEG信号的输出波形

公共信号COM和段信号SEG输出的电压如表(a)-(d)所示。只有在公共信号COM和段信号SEG都为选择电压时才为±VLCD的点灯电压(选择),在其他组合时为熄灯电压(非选择)。
静态显示模式时,公共信号COM的输出波形,在LCD时钟属于的1个周期T(选择或非选择),前T/2输出VL4分压电平,后T/2输出Vss电平;段信号SEG的输出波形,在LCD时钟属于选择时的1个周期T,前T/2输出Vss分压电平,后T/2输出VL4电平,属于非选择时的1个周期T,前T/2输出VL4分压电平,后T/2输出Vss电平。

5.png

1/2偏压时,公共信号COM的输出波形,在LCD时钟属于选择时的1个周期T,前T/2输出VL4分压电平,后T/2输出Vss电平,属于非选择时的1个周期T,输出VL2电平;段信号SEG的输出波形,在LCD时钟属于选择时的1个周期T,前T/2输出Vss分压电平,后T/2输出VL4电平,属于非选择时的1个周期T,前T/2输出VL4分压电平,后T/2输出Vss电平。

6.png

1/3偏压时,公共信号COM的输出A波形,在LCD时钟属于选择时的1个周期T,前T/2输出VL4分压电平,后T/2输出Vss电平,属于非选择时的1个周期T,前T/2输出VL1分压电平,后T/2输出VL2电平;段信号SEG的输出A波形,在LCD时钟属于选择时的1个周期T,前T/2输出Vss分压电平,后T/2输出VL4电平,属于非选择时的1个周期T,前T/2输出VL2分压电平,后T/2输出VL1电平。

1/3偏压时,公共信号COM的输出B波形,在LCD时钟属于选择时的1个周期T,前T/2(在前半帧Tf/2)输出VL4分压电平,后T/2(在后半帧Tf/2)输出Vss电平,属于非选择时的1个周期T,前T/2(在前半帧Tf/2)输出VL1分压电平,后T/2(在后半帧Tf/2)输出VL2电平;段信号SEG的输出B波形,在LCD时钟属于选择时的1个周期T,前T/2(在前半帧Tf/2)输出Vss分压电平,后T/2(在后半帧Tf/2)输出VL4电平,属于非选择时的1个周期T,前T/2(在前半帧Tf/2)出VL2分压电平,后T/2(在后半帧Tf/2)输出VL1电平。

7.png

1/4偏压时,公共信号COM的输出A波形,在LCD时钟属于选择时的1个周期T,前T/2输出VL4分压电平,后T/2输出Vss电平,属于非选择时的1个周期T,前T/2输出VL1分压电平,后T/2输出VL2电平;段信号SEG的输出A波形,在LCD时钟属于选择时的1个周期T,前T/2输出Vss分压电平,后T/2输出VL4电平,属于非选择时的1个周期T,前T/2输出VL2分压电平,后T/2输出VL2电平。

1/4偏压时,公共信号COM的输出B波形,在LCD时钟属于选择时的1个周期T,前T/2(在前半帧Tf/2)输出VL4分压电平,后T/2(在后半帧Tf/2)输出Vss电平,属于非选择时的1个周期T,前T/2(在前半帧Tf/2)输出VL1分压电平,后T/2(在后半帧Tf/2)输出VL3电平;段信号SEG的输出B波形,在LCD时钟属于选择时的1个周期T,前T/2(在前半帧Tf/2)输出Vss分压电平,后T/2(在后半帧Tf/2)输出VL4电平,属于非选择时的1个周期T,前T/2(在前半帧Tf/2)输出VL2分压电平,后T/2(在后半帧Tf/2)输出VL2电平。

8.png

COM信号和SEG信号的输出波形实例

在此例子,以第7位的9.png进行说明。需要根据显示图形并且通过COM0~COM3的各公共信号的时序,将表所示的选择电压和非选择电压输出到SEG12引脚和SEG13引脚。
10.png

因此,给SEG12对应的显示数据寄存器(地址F040CH)准备“1101”即可。SEG12和各公共信号之间的LCD驱动波形例子如下图所示。在选择COM0时SEG12为选择电压,就知道LCD点灯电平+VLCD/–VLCD的交流矩形波的产生。

11.jpg

SEG12和各公共信号之间的4个时间片的LCD驱动A波形例子(1/3偏压法)

12.pngSEG12和各公共信号之间的4个时间片的LCD驱动B波形例子(1/3偏压法)

作者:Leo Liao

来源:瑞萨嵌入式小百科

围观 13

PLC(可编程逻辑控制器)作为可控制、执行和监控自动化机器设备的数字运算操作电子系统,广泛应用于楼宇设备控制、水处理、能源、工业自动化等众多领域,并已形成广大的市场规模,随着汽车电子“新四化”发展,将进一步推高PLC市场发展增速。据市场情报公司Mordor Intelligence预测,PLC市场规模在2024年将达128亿美元,并以4.32%的年复合增长率保持持续发展,而亚太地区是其最大且增长最快的应用市场。

极海APM32F407 PLC应用概述 

PLC的性能指标主要是通过扫描周期、储存容量、功能来评估,其中扫描周期起决定性作用。扫描周期主要受I/O输入点数、主控芯片执行指令、运算的影响,在功能复杂的情况下,对于主频的要求也会更高。

极海APM32F407微控制器,基于Arm® Cortex® -M4F先进内核,主频高达168MHz,同时支持浮点和带符号的数字运算,有助于提高PLC扫描周期性能,可实现按位的与、或、非、异或等基本逻辑控制。

1.jpg


基于APM32F407 PLC应用方案框图

极海APM32F407 PLC应用优势

  • 指令执行周期短,数据运算速度快,支持符号运算及浮点运算

  • 集成数字通信、I/O控制、脉冲控制、模拟控制等丰富资源于一体

  • 可拓展性强:集成扩展板接口,可根据不同场景需求加装模块

  • 抗干扰、稳定性强:外接采用电气隔离的输入/输出接口

  • 支持数据备份

2.png

应用领域:切削机床、传送带、电梯、包装车间、智慧农棚等

极海APM32F407 芯片介绍

  • 高性能:采用55nm生产工艺,基于Arm® Cortex® -M4F先进内核,支持单精度浮点FPU

  • 大容量:内置192+4KB SRAM、1MB FLASH

  • 外设资源丰富:集成USB_OTG、Ethernet、CAN、EMMC等,令控制器板间功能更加丰富,满足各类开发需求

  • 耐受性:工作温度覆盖-40℃~105℃,对电磁环境、高温环境有更高容忍度,适应复杂的工业工作环境

基于极海APM32F407的可编程逻辑控制器应用方案,凭借可靠性高、灵活性强、易于扩展、使用便捷等优势,已获得工业控制、汽车电子等诸多头部厂商的认可。

2024年面向工业自动化中的中高端领域,极海将进一步完善APM32系列工业级MCU产品线,支持高性能实时控制MCU产品系列化;面向新能源领域,极海将积极布局高性能模拟与混合信号芯片,提供MCU+产品与应用方案支持;旨在为工业自动化和数字化转型提供更强大的国产芯片与成熟的解决方案。

来源:Geehy极海半导体

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 24

1、产品概述

低压鼓风机是一种高效、稳定的鼓风设备,广泛应用于工业生产中。它采用了离心风机的原理,通过叶轮的高速旋转产生气流。不同于传统的鼓风机,低压鼓风机的叶轮是中空的,可以实现气体的无脉动压入。叶轮的设计使得空气在进入和离开时形成一个恰到好处的压力均衡,从而保证了稳定的鼓风效果。

低压鼓风机在运行过程中能够保持较低的振动和噪音,经过精密设计和严格质量控制,具备出色的稳定性和可靠性。它适用于各种工业应用场景,可以广泛用于风机、排液、燃料燃烧等领域,并满足不同工艺对压力和流量的需求。

本方案介绍的是一款基于CW32的低压风机控制器,重点介绍了它的功能、参数、硬件组成、方案设计、故障定义等等。该控制器适用于各类低压风机的速度控制,具有高精度、低噪音、高效率等特点。

2、功能特点

低压风机具有许多功能特点,以下是低压风机的主要特点:

1. 高效稳定:低压风机采用先进的设计理念,具有较高的效率,能够在较低的能耗下实现高效的通风效果。同时,由于其结构简单、维护方便,使得其运行稳定可靠。

2. 低噪音:由于低压风机设计时考虑到了噪音控制,因此在运行时产生的噪音相对较低。这使得低压风机非常适合在需要保持安静环境的场所使用,如医院、实验室和办公室等。

3. 能耗低:低压风机的能耗较低,通常只有传统压缩机的三分之一甚至更低。这有助于降低能源消耗和运行成本。

4. 安装维护方便:低压风机安装方便,可以方便地安装在墙壁或其他结构上,不需要占用太多空间。同时,低压风机的维护简单,使用者可以方便地进行日常维护和保养。

5. 应用范围广:低压风机适用于许多领域,如通风、空调、净化等。它可以用于输送空气和烟气等气体,为工业生产和日常生活提供良好的通风环境。

总之,低压风机具有高效稳定、低噪音、低能耗、安装维护方便和应用范围广等特点。这些特点使得低压风机成为一种理想的通风设备,广泛应用于各种场所和领域。

3、风机驱动实物图

1708506230818961.png

1708506565433800.png

1708506241756251.png

4、驱动器功能描述

驱动器通过使能控制端启停电机,通过调速接口控制风机无级调速、通过方向控制端口控制电机正反运转。支持宽电压工作范围:8-60V,工作电流17A,最大输出功率500W。具有顺风接转功能、过温保护等功能。

另外,驱动器还具有故障自恢复功能。在系统发生3次故障后,需断电重启。在电流、电压、温度故障发生时,如果故障消除,5S后自动重启。

控制端口定义如下:

  • 5V:配合10K电位器使用,5V、VSR和GND,也可以直接配合VSR实现开机全速。

  • 速度控制VSR:通过VSR接口进行调速输入。接受调速电压0-5V(0.18V启动),PWM脉冲调速(频率10KHZ, 5V, 0%-100%)

  • GND:控制信号负极,可配合VSR,END使用。

  • 使能控制EN:通过EN接口控制电机的启动和停止。配合GND,在授受调速信号时,可控制启动与停止。连接GND时,停止。断开GND时,运行。

  • 方向控制DR:通过DR接口控制电机运转方向控制。与GND短接时,反转。

  • 速度输出FG:通过FG接口输出速度信号。电机速度脉冲输出,用于转速计算。当极对数为P时,每转一圈输出P个脉冲。电机转速(RPM)=输出脉冲频率*60/极对数。使用时,需要10K上拉电阻至5V。

5、参数列表

1. 电压范围:8-60V。

2. 电流范围:最大工作电流不超过17A。

3. 工作温度:-20度~85度,湿度:最大85%

4. 支持的BLDC电机最大转速:1对极7W转。

5. 调速范围:0-100%额定转速连续可调。

6. 启动时间 :0至最大速<1S.(可根据需要调整)

7. 保护功能:过流17A保护、过压65V保护(可根据需要调整)、欠压8V保护(可根据需要调整)、过温85度保护等、限流45A保护。

6、方案主控芯片

该方案基于CW32F030C8T6主控。

CW32F030C8T6内核:ARM® Cortex®-M0+、最高主频64MHz、工作温度:-40℃ 至 105℃、工作电压:1.65V至5.5V、最大64K字节 FLASH,数据保持25年@85℃、 最大 8K 字节 RAM。

  • 支持最多 39 路 I/O 接口

  • 模数转换器:12 位精度,±1 LSB,最高 1M SPS 转换速度

  • 五通道DMA控制器

  • 定时器

16 位高级控制定时器,支持 6 路捕获 / 比较通道和 3 对互补 PWM 输出,死区时间和灵活的同步功能

四组 16 位通用定时器

三组 16 位基本定时器

  • 80位唯一ID

7、硬件组成

驱动器硬件由主控MCU最小系统电路、电源稳压电路、逆变驱动电路、反电动势检测电路、控制接口电路、各种保护电路等组成。

1. 控制器:采用高性能的CW32微控制器,该控制器具有丰富的外设资源和强大的运算能力,能够满足复杂的控制需求。

2. 驱动电路:采用适合FD6288驱动芯片,支持三相全桥逆变,可驱动电机高效运转。

3. 反电动势电路:电机位置检测电路。

4. 电源电路:为控制器和驱动电路提供稳定的电源,保证系统稳定运行。

5. 保护电路:具备过流保护、过温保护、过压保护、欠压保护等功能,提高系统的安全性和稳定性。

6. 控制接口电路:支持方向、使能、转速等控制接口接入,实现风机的智能控制。

8、方案描述

该方案使用32位单片机CW32F030C8作为主控,使用AD软件比较过零点方式进行电机换相控制,采用六步方波控制算法。采用顺风接转+静态脉冲注入的启动算法,最小输出10%占空比,支持最高70000转的BLDC风机控制。

9、方案测试

6.png

产品开发测试图片

7.png

脉冲注入转子位置判定时端电压波形

8.png启动过程端电压波形

9.png高速运转端电压波形

10.png最大输出端电压波形

来源:CW32生态社区

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 13

电动两轮车以其便捷、灵活、节能环保等优势,承载了大部分短途出行需求。随着智能技术的引进,电动两轮车在安全性、可靠性、舒适性、远程控制、数据传输等方面有更高升级需求。

电动两轮车主要由电机控制器、仪表盘、辅助电源、充电器及BMS等部件组成。为增加大量智能配置、提升产品竞争力,各电动两轮车厂商都积极寻求在性能、功耗、成本上更具优势的电机控制器主控芯片,以满足更精准电机运转控制、大功率控制、动力与传动效率提升等多种功能需求。

APM32F035电动两轮车电机控制器方案介绍

极海从续航、智能化、人性化、性价比等电动两轮车主要指标考虑,推出APM32F035电动两轮车控制器应用方案,并已实现量产。该应用方案具备霍尔捕获、自学习、刹车、倒车、巡航、挡位调速、防盗报警等功能,从控制电路、采样电路、驱动电路、通信电路等硬件设计,以及系统级开发生态等方面进行验证与测试,整个系统能很好地满足电动两轮车设计指标要求。

极海电动车两轮控制器应用方案,采用APM32F035电机控制专用MCU,支持有感FOC矢量控制策略,集成多路运放、比较器,极大地精简外围电路设计,降低外部干扰,同步实现高效率、低噪声。APM32F035作为本方案的主控芯片,负责母线电压、电流、HALL等信号采样,执行电机控制逻辑,并接收上层应用下发的控制指令及回传运行状态反馈等。

1.png

APM32F035电动两轮车电机控制器应用方案实现框图

APM32F035通过挡位调速等方式下发相应的控制指令,同步对母线电压以及电机的相电流信号进行ADC采样,输入至MCU内部进行处理,并结合TMR2提供捕获到的霍尔信号结合内部算法计算获取实际运行角度,进而执行内部电机算法逻辑控制,随后通过Timer1输出3对互补的PWM信号至驱动芯片以及功率器件,进而驱动电机机运转,使电机更为高效、平稳、低噪声地运行。

2.pngAPM32F035电动两轮车电机控制开发板

APM32F035电动两轮车电机控制器方案特点:

■ FOC矢量控制,减少能耗,提高续航

■ 集成运放和比较器,降低BOM成本

■ 支持霍尔学习,绝对零度检测,60°/120°霍尔安装方式,节省开发步骤

■ 支持霍尔补偿,提升电机运行效率

■ 采用转矩控制,对于负载变化响应迅速,能够额定负载坡起

■ 电子刹车和E-ABS,行驶更安全

■ 支持显示屏串口和CAN通讯,满足高端应用需求

APM32F035电机控制专用MCU关键优势:

● 基于Arm® Cortex®-M0+内核,72MHz高主频

● Flash 64KB,SRAM 10KB,BootLoader 4KB

● M0CP 协处理器:硬件配置包括移位、32bit/32bit 除法器、开方、三角函数等,用更短运算时间实现更复杂运算

● 模拟外设:OP-AMP×4,COMP×2,12-bit ADC×1

● 数字外设:SPI×1,U(S)ART×2,I2C×1,CANx1,DMA

● 电机专用PWM:支持互补、刹车,可与M0CP联动


电机是一个需求空间大、增长快速、应用广泛的领域。极海围绕各类电机应用持续丰富产品组合,即将推出内置200V 6N-Gate Driver栅极驱动的APMSPIN32F020高集成32位FOC矢量控制MCU、内置200V双N沟道的GHD3440三相电机专用栅极驱动器,并推出相应贴合市场需求的应用方案。我们完善的电机控制开发生态与快速响应的本地化技术支持服务,可帮助用户加速产品上市时间并保持差异化竞争力。

来源:Geehy极海半导体

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com

围观 56

兆易创新GigaDevice近日宣布,搭载了兆易创新GD25F128F车规级SPI NOR Flash的明然科技国产化主动悬架控制器(CDC)出货量已超数万台,并在奇瑞瑞虎9和星途瑶光等车型上量产。在汽车底盘悬架系统等安全性要求较高的场景中稳定运行,标志着兆易创新车规级SPI NOR Flash的可靠性得到进一步验证。

1.jpg

▲兆易创新GD25F128F和明然科技悬架控制器产品图

悬架是车架(或车身)与车轿(或车轮)之间的传力连接装置,分为传统被动式、半主动式和主动式三类,而主动式悬架系统能根据车辆的运动状态和路面情况自适应调节减振器阻尼力,使其更好地适用于当前路段,悬架控制器(CDC)作为主动悬架系统的控制核心,可以通过对减振器和空气弹簧的控制,有效提升车辆的舒适性和操控性。

随着汽车电动化和智能化的发展,以及消费者对座舱舒适性和车辆操控性的需求提升,主动式悬架的应用受到了车厂的广泛关注,而其作为汽车底盘的关键部件之一,对所搭载的车规级芯片有着极高可靠性和安全性要求。明然科技国产化主动悬架控制器(CDC)所采用的GD25F128F车规级SPI NOR Flash具有128Mb容量存储范围,提供单、双、四通道SPI接口和DTR SPI接口,数据读取频率高达166MHz,支持ECC纠错,有效提高产品的可靠性和高速I/O信号的准确性,为汽车电子应用提供快速存储读取和高品质保障。

明然科技研发总监何洪先生表示:

“GD25F128F车规级SPI NOR Flash具有高性能和高可靠性的特点,且产品从设计研发、生产制造到封装测试所有环节均采用国内供应链,这与明然科技国产化主动悬架控制器的产品理念不谋而合。我们很高兴能与兆易创新一起,共同打造一站式国产车规芯片开发和量产平台,为汽车产业的创新发展注入新动能。”

除已成功在奇瑞车型上量产的车规级GD25F128F外,兆易创新GD25/55全系列SPI NOR Flash和GD5F SPI NAND Flash 均已通过AEC-Q100认证,并提供丰富的选择组合,包括2Mb~8Gb全容量覆盖、高达400MB/s的数据吞吐率、提升可靠性的ECC算法和CRC校验、延长产品寿命的10万次擦写和20年数据保持能力等,这些完善的产品组合能够全面满足汽车电子应用所需,为车载应用的国产化提供了更丰富的选择,为车载娱乐影音、智能网联、智能驾驶、电池管理、充电管理、域控制、车载网关、DVR、智能驾舱、Tbox等应用提供大容量、高性价比的解决方案。

截至目前,兆易创新车规级存储产品累计出货量已达1亿颗。并且,兆易创新高度重视汽车芯片管理体系的构建和完善,通过ISO 26262:2018汽车功能安全最高等级ASIL D流程认证,具备为顶级的汽车厂商所需的功能安全目标与要求提供匹配的产品和服务能力。

关于明然科技

明然科技成立于2017年,公司核心技术团队主要来自博世、宁德时代、上汽通用、经纬恒润等。公司聚焦于汽车电动化和智能化领域,量产产品包括电池管理系统(BMS)、电池配电盒(BDU)、整车控制器(VCU)、电机控制器(MCU)、以太网网关(IGW)、智能电池传感器(IBS)、车身域控制器(DCU)、主动悬架控制器(CDC)、电子助力转向控制器(EPS)等十余款电控产品,累计出货量达到几十万套。公司致力于为中国汽车行业提供一流的产品和服务,客户包括广汽乘用车、奇瑞汽车、赛力斯、东风岚图、赣锋电池等几十家主机厂和零部件供应商。

关于兆易创新

兆易创新科技集团股份有限公司(股票代码603986)是全球领先的Fabless芯片供应商,公司成立于2005年4月,总部设于中国北京,在全球多个国家和地区设有分支机构,营销网络遍布全球,提供优质便捷的本地化支持服务。兆易创新致力于构建以存储器、微控制器、传感器、模拟产品为核心驱动力的完整生态,为工业、汽车、计算、消费电子、物联网、移动应用以及通信领域的客户提供完善的产品技术和服务,并已通过ISO 9001、ISO 14001等管理体系的认证,与多家世界知名晶圆厂、封装测试厂建立战略合作伙伴关系,共同推进半导体领域的技术创新。欲了解更多信息,请访问:www.GigaDevice.com

来源:兆易创新GigaDevice

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。    

围观 7

意法半导体 STPM801是率先市场推出的车规集成热切换的理想二极管控制器,适合汽车功能性安全应用。

1.png

这款理想二极管控制器驱动一个外部 MOSFET开关管,替代过去在输入反向保护和输出电压保持电路中常用的肖特基二极管。MOSFET上的电压降比肖特基二极管的正向电压降低,因此,正常工作期间的耗散功率也低于二极管。当电源失效、掉电或输入短路等故障导致反向电压事件时,关断 MOSFET功率管可以阻止相关的反向电流瞬变事件。

这款理想二极管控制电路还提供主电源与备用电池的电源切换 ORing控制器,确保自动驾驶和高级驾驶辅助系统(ADAS)等安全关键设备拥有不间断的电源供给。

内置的热切换控制器驱动第二个外部 N 沟道 MOSFET管,在主电源和备用电池切换期间保护负载。软启动功能以恒定电流对连接栅极的已知容值的电容充电,以此控制第二个 MOSFET管的导通瞬变事件,避免高浪涌电流发生。只要输入电压不在指定阈值内,过压和欠压引脚就会截止输出电压。

STPM801还有保护和监测功能,适合功能安全要求达到ISO 26262 汽车安全完整性等级 (ASIL) D级的系统。这些功能集成在一个 5mm x 5mm VFQFN-32的封装内,节省了 PCB电路板面积,并最大限度地减少外部组件数量。

STPM801的工作电压范围是4V-65V,能够耐受汽车电气危险,25μA静态电流可最大限度地降低车辆关闭时的电池漏电量。目标应用包括区域/车身 ECU、ADAS ECU、高性能计算 ECU、信息娱乐 ECU、冗余供电系统和双电池系统。

STPM801现已投入量产。

详情访问www.st.com/stpm801

关于意法半导体(ST

意法半导体拥有5万名半导体技术的创造者和创新者,掌握半导体供应链和先进的制造设备。作为一家半导体垂直整合制造商(IDM),意法半导体与二十多万家客户、数千名合作伙伴一起研发产品和解决方案,共同构建生态系统,帮助他们更好地应对各种挑战和新机遇,满足世界对可持续发展的更高需求。意法半导体的技术让人们的出行更智能,电源和能源管理更高效,物联网和互联技术应用更广泛。意法半导体承诺将于2027年实现碳中和。详情请浏览意法半导体公司网站:www.st.com

围观 9

长期以来,国内BLDC电机应用的芯片产品非常依赖进口,国产厂商一直在努力提升芯片产品的自给率,打造更健康的行业生态。

航顺芯片作为国产32位MCU厂商,长期投入电机专用MCU研发设计,致力于打造性能比肩国际大厂的电机专用MCU及周边生态。本次研讨会上,航顺芯片资深FAE杨应纯详细介绍了两款电机BLDC电机控制专用MCU新品——HK32M060和HK32M050。同时,杨工也分享了航顺电机控制专用MCU产品路线,分为无预驱、低压预驱和中压预驱三大类,均有量产产品,应用在下游应用市场。

查看视频.jpg

3大特色功能

随着人们生活水平提高及消费市场的需求升级,终端市场对电机控制性能提出了更高的要求——除了电机开关和变档控制外,电机还需要实现多种复杂控制任务。本次解密的HK32M060和HK32M050具备三大特色功能,为客户提供创新产品力——

  • 内置1个12位高精度ADC转换器,ADC转换速率高达1MSPS。ADC除了支持DMA操作以外,每个ADC通道配置独立的结果寄存器;支持两个独立的采样保持单元;支持4个独立转换和1个测试队列的灵活队列配置;ADC触发信号可延时配置等特色功能。

  • 内置一个16位高级定时器,支持6个通道三项互补PWM输出,PWM输出带死区插功能,并且前后死区时间可不对称调整;除4路独立捕获和比较通道以外,还配置2路额外CC5和CC6捕获和比较通道,更适合电机控制。

  • 内置航顺自研知识产权的电机加速单元(EMACC),可用于通过FOC算法控制的直流无刷电机。EMACC可以加速电机驱动的数学运算,运算速度较纯软件计算更快,并且减少CPU占用,在相同的CPU工作频率下,效率提升36%。

创新产品力

HK32M060产品功能丰富,内部集成了具有航顺特色的电机控制功能:高级定时器带3路互补PWM、 高精度ADC、6MHz带宽轨到轨运放、比较器、32位针对霍尔传感器的捕获时钟、硬件除法器以及电机算法加速引擎等功能。同时发布的两款SOC产品,HK32M063和HK32M064内部更是集成了40V和70V PN预驱、NN预驱、LDO等,使得应用者可以大幅度精简板级器件、节省BOM成本。

1.png

HK32M050极具性价比,产品内部集成了具有航顺特色的电机控制功能:高级定时器带3路互补PWM、 高精度ADC、6MHz带宽轨到轨运放、比较器、32位针对霍尔传感器的捕获时钟、硬件除法器以及电机算法加速引擎等功能。 HK32M053和HK32M054内部更是集成了40V和70V PN预驱、NN预驱、LDO等,使得应用者可以大幅度精简板级器件、节省BOM成本。

2.png

航顺电机控制专用MCU产品广泛应用于工业控制、家用电器、电动工具和交通运输等领域,凭借创新的技术和可靠的产品,赢得了众多客户的认可和支持,为国内高性能电机控制专用新品的国产替代贡献了一份力量。

来源:航顺芯片

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 29

- 作者前言 -

“英飞凌汽车电子技术专家
英飞凌汽车电子技术专家 张驰

汽车工业经过百年发展,已经进入了有史以来最激动人心的时刻,技术的进步有望带来无与伦比的安全性,更高的生产率和更好的环境利益。但具有自动驾驶功能的纯电动汽车不可能在一夜之间成为主流或平价。OEM意识到,他们需要为当下和未来的汽车建立正确的架构基础。区域控制器是整车EE架构的重要部分。本文讨论实现区域控制器的关键技术以及MCU解决方案。

区域控制器是汽车中的节点,在汽车的一个物理区域内,为各传感器、执行器等设备提供电源分配,数据连接和I/O采集与驱动需求。MCU是区域控制器的大脑,区域控制器中的MCU一般需要具备强大的处理能力,有很丰富的通讯接口,同时具备一定功能安全和信息安全等级。下面介绍区域控制器的一些关键技术和MCU解决方案。

1、高算力多核处理器

围绕区域控制器和中央计算单元的EE架构车辆,会使车辆中的ECU的数量减少,但也增加了一些ECU的处理器负载,因为有更多的功能部署到这些。在物理上,区域控制器是多个ECU的逻辑集中点,这对于区域控制器中MCU的算力有了更高的需求。在传统功能单一的ECU中往往使用性能较低的单核MCU即可满足要求,而对于区域控制器,往往需要高性能的多核MCU才能满足要求。在多核MCU中每个核可以跑一种单独功能,多核即可实现多种功能,从而实现多种ECU功能的融合。

TC3xx微控制器是第2代AURIX™产品,搭载了多达六个TriCore™ 1.62嵌入式内核,每个内核的时钟频率最高可达300MHz。下图是TC3xx家族中的TC39x系列MCU模块图,TC39x的算力达到了4000 DMIPS。

“Figure
Figure 1: TC39x Block Diagram

TC4xx微控制器是第3代AURIX™产品,搭载了多达六个TriCore™ 1.8嵌入式内核,每个内核的时钟频率最高可达500MHz,并且集成一个PPU协处理器,可实现快速向量运算,基础神经网络算法以及其它一些复杂数学算法。PPU在未来的区域控制器中可以被应用于建模,模型预测控制以及防入侵检测等一些信息安全算法中。下图是TC4xx家族中的TC4Dx MCU的模块图,TC4Dx的算力达到了8000DMIPS+72GFlops*1。72GFlops是由PPU贡献的。

“Figure
Figure 2: TC4Dx Block Diagram

*1. FLOPS是每秒浮点运算次数。1GFLOPS = 每秒十亿(=10^9)次的浮点运算。以多层感知器(Multi-Layer Perception ,MLP)为例,在输入层神经元数量=14,隐藏层神经元数量=20,输出层神经元数量=1的情况下,大约需要1.7GFLOPS的算力。

2、连接和互通

在区域控制器体系中,每个传感器和执行器都根据其位置连接到本地区域控制器,然后区域控制器执行一些数据帧格式转换,汇总数据并通过高速以太网将数据传送至中央处理单元。区域控制器一般通过控制器CAN或LIN总线和挂载在它上面的传感器和执行器通信,或者通过低速以太网或LVDS与摄像头或其他ADAS传感器进行通信。这就要求区域控制器的主控MCU有丰富的CAN和LIN的通讯接口以及高速以太网接口。在区域控制器进行数据转发的过程中,还需要考虑通信延迟的问题,在中央集中式架构中,大部分的控制和执行命令是由中央处理单元发出,有些命令(例如底盘和动力)对于延时有严格的要求,因此对于区域控制器中从高速以太网转发到CAN/LIN/低速以太网接口的延时时间也有了要求。

TC3xx/TC4xx家族产品都有丰富的CAN/LIN/Ethernet通讯接口。

“Figure
Figure 3: TC39x/TC4Dx CAN/LIN/Ethernet Channel

TC4xx产品中更是集成专用的硬件通讯路由模块CRE (CAN Routine Engine)/DRE (Data Routine Engine)。TC4xx中的一个CAN模块中集成了4个CAN 节点,当相同模块中的CAN节点进行数据通信时,可以通过CRE直接实现CAN数据转发,无需CPU和软件介入。当不同模块中CAN节点进行数据转发或者CAN节点和以太网之间进行数据转发,则可以通过CRE+DRE的方式直接实现数据转发,也无需CPU和软件介入。

“Figure
Figure 4: TC4xx CRE & DRE

这种硬件路由引擎直接实现数据转发的方式大大减少了数据延迟,CAN到Ethernet的转发延时最少可以到15us,CAN到CAN的转发延时最少可以到5us。

“Figure
Figure 5: TC4xx Communication Latency

在未来的中央集成EE架构中,通讯数据量不断增加,高速以太网逐渐成为EE架构中的主干网。而为了考虑数据通信安全和冗余,以太网环网架构逐渐成为主流,区域控制器和中央控制单元则都是以太网环网架中的节点。TC4Dx中有2路5Gbps的高速以太网接口和4路10/100Mbps接口,2路高速以太网接入以太网环网(1进1出),4路低速以太网则可以接雷达或者摄像头传感器。2路高速以太网可以通过内部集成的高速以太网桥(G-Ethernet Bridge)直接进行以太网帧转发。4路低速以太网接口之间也可以通过低速以太网桥(L-Ethernet Bridge)直接进行以太网帧转发。低速以太网接口和高速以太网接口之间也可以通过低速以太网桥+DRE+高速以太网桥直接进行以太网帧转发。这种方式大大减少以太网接口之间数据转发的延时时间。

“Figure
Figure 6: TC4xx Ethernet Bridge

在中央处理单元和区域控制器为节点的以太网骨干网络中,往往需要传输多种以太网数据帧,有些数据需要进行确定性的传输(例如控制类数据),有些数据则会占用很大的带宽(例如音视频数据,ADAS传感器数据等),有些则是常规数据(例如对于传输延时没有要求)。因此,在这个骨干网络中,需要对于以太网帧进行分类,对于控制类数据要保证在可控的延时时间内可以发送出去,对于音视频或者ADAS传感器数据要保证在正常传输的同时不能干扰网络中其他以太网帧的传输,造成其他高优先级以太网帧阻塞。

Ethernet TSN协议很好的解决了这个问题,其中IEEE802.1Qav实现了流量整形,优先级划分和队列管理,很好的解决了数据冲突的问题,而在此基础上形成的IEEE802.1Qbv实现了时间整形(Time-aware Shaper)机制,允许端口按照一定的时基来控制流量是否允许传输,传输的开关通过传输门(Transmission Gate)和门控制表(Gate Control List,GLC)来控制。通过这种时隙划分机制,隔离了时间敏感消息流和其他普通消息流,既能够实现时间敏感消息的确定性传输,使得消息到达时间可预测,又能避免普通消息的干扰,提高实时性。IEEE802.1AS则给以太网网络中各个节点提供了时间同步的机制,IEEE802.1AS-rev在此基础上又增加了主时钟冗余和多时间域的概念。

TC3xx/TC4xx以太网控制器支持的AVB/TSN协议如下:

“Figure
Figure 7: TC3xx/TC4xx Ethernet TSN Support

*1) IEEE802.1 Qbv-prelim: 是指TC3xx的GETH的通道/队列中支持一种slot功能。例如可以把一个同步周期分为3个slot, 然后配置3个队 列,每个队列占用一个slot,这样就能实现3个队列发送不同的以太网帧以及3个队列发送的数据互不干扰。

3、互不干扰性

在面向区域的中央集中式架构中,ECU的数量将大幅度减少,这一部分减少的ECU有一部分将并入区域控制器中,有些则会把控制功能往上传至中央处理单元来实现,而自身则转变为一个智能传感器或者智能执行器。在这个过程中,区域控制器会承载越来越多的功能,而各个功能独立运行和互不干扰至关重要。

按核划分

目前多核MCU在汽车电子上得到了广泛的应用,可以每个核分配一个功能,这样每个功能并行运行,提高运行效率,并且能保证互不干扰,当然这个需要依赖Memory Protection Unit (MPU)。TC3xx/TC4xx有多达6个CPU内核,且每个CPU都支持Memory Protection Unit (MPU)。以TC3xx为例,每个CPU内核都6组保护设置,每组保护设置有18个数据保护区,10个代码保护区。当配置代码数据和代码保护区后,其他CPU将无法访问这些区域。另外考虑一个CPU中运行操作系统的情况,当有多个任务同时执行时,可以给每个任务分配一组保护设置,这样可以做到任务之间数据和代码的隔离。

“Figure
Figure 8: TC3xx/TC4xx MPU

另外区域控制器中的各项功能也会使用不同的MCU外设通道,也需要对外设进行很好的隔离。在TC3xx/TC4xx中每个外设通道都有访问保护(Access Protection),其实现的原理是给每个SRI总线master分配一个master tag ID, 每个外设通道都可以设置允许哪些master可以访问该通道。通过这些方式可以把不同的外设分配给不同的内核进行访问,从而保证其他内核不会非法去控制不是属于该内核的资源。

虚拟化技术

中央集中式的架构对于研发团队的组织架构影响也是巨大的,在未来的区域控制器中可能整合了多种ECU功能,而原来开发这些功能的研发人员可能来自不同的团队,那么就会面临几个问题:

- 如何协调这些研发人员开发区域控制器?需要考虑这些研发人员以前使用的开发环境(如操作系统,编译器,调试器等)可能是不一样的。

- 如何重用以往项目中的软件?

- 如何让这些研发人员同步开发而且相互之间没有干扰?

举一个例子(不一定符合实际情况),现在要开发一个区域控制器(放在左车身域),这个区域控制器至少要实现左边车身域的I/O控制和检测(类似以前的BCM功能),作为车身的一个网关(Gateway),还要作为左车身域配电中心(Power Distribution),最后可能还要考虑能够对于挂载在它上面的各个ECU进行固件升级(OTA)。假设原来BCM和网关的软件是不同两个研发团队开发,他们用的OS也是不一样的,现在想重用以前的BCM和Gateway的软件,然后重新开发左车身域配电中心和对各个ECU进行固件升级的功能。那么如何才能高效的完成这个项目?

虚拟机(VM, Virtual Machine)完美地解决了这些问题。虚拟机是一种通过模拟物理机来封装和执行其他软件的软件。被执行的软件可以是一个单一的程序,也可以是一个完整的操作系统,按照通常的方式执行任务。Hypervisor是一个中间软件层,用于在虚拟机之间划分处理、内存和通信资源,并将同时运行的虚拟机调度和迁移到不同的资源上。虚拟化的一个主要用途是整合需要不同操作系统,以及相同操作系统的不同版本的ECU功能。

从微观上来讲,每个CPU内核支持多个vm(例如vm0~vm7),各个虚拟机之间实际上是对CPU进行分时复用,每个虚拟机之间可以用Level 2的MPU进行数据和代码的隔离。从宏观上来讲,每个功能可以由一个VM来实现,而每个VM实际都对应一个或者多个CPUx.vmy。

以上述区域控制器为例,BCM功能用VM1来实现 (假设原来是用一个三核MCU做的),Gateway功能用VM2来做(假设原来也是用一个三核MCU做的),VM3则实现区域配电功能,VM4实现OTA功能。VM1实际会包含cpu0.vm1, cpu1, vm1, cpu2.vm1,而VM2实际会包含cpu0.vm2, cpu1.vm2, cpu2.vm2, VM3用CPU3.VM1,VM4用CPU3.vm2。这样,VM1和VM2依然还是可以重用以前的软件(尽管以前用的是老版本的AUTOSAR软件和操作系统),而新开发的功能VM3和VM4则可以用新的AUTOSAR版本。这些虚拟机之间用Hypervisor进行管理和调用,实际上每个CPU的vm0就是运行在Hypervisor模式,用于调度每个CPU的虚拟机,而所有CPU的vm0集合就是宏观上所说的Hypervisor模式。

“Figure
Figure 9: Hypervisor Example

除此之外,各个外设通道也可以设置各自的访问保护(Access Protection),每个外设通道都可以设置允许哪些VM可以访问该通道,从而做到VM之间的资源访问隔离。

TC4xx MCU所使用的是TC1.8 TriCore™内核,支持虚拟机。每个内核支持8个VM (VM0~VM7),它支持3套独立CPU内核寄存器,VM0和VM1各独占1套,VM2~VM7共享另外1套内核寄存器,因此从VM0或者VM1到其他VM可以快速切换。

“Figure
Figure 10: Hypervisor Example

4、OTA

中央集中式的架构会使硬件平台变得统一化,包含控制器,传感器,执行器和各种接口,不同功能的实现全由运行在各种硬件平台上软件进行区分,从而真正实现“软件定义汽车”。未来的区域控制器是车上某个区域的枢纽,它需要能够对挂载在它上面各种ECU,传感器,执行器的软件进行更新,除此之外它还需要能够对自身的软件进行更新。

TC3xx/TC4xx MCU都可以实现无感OTA,即TC3xx/TC4xx MCU有两个独立Bank的Flash, 当程序运行在其中一个Bank的Flash时,可以把更新的程序写入另外一个Bank,在这个写入过程中,自身的程序的运行不会受到影响。

另外TC3xx/TC4xx MCU可以支持EMMC接口,最高访问速度可达400Mbps,可以把其他ECU或者传感器的更新固件放在外接的EMMC存储器中,等到合适的时机,再对其他ECU或者传感器进行程序升级。

5、功能安全

随着车辆功能的复杂性增加,由于EE系统的故障而导致的不安全行为的可能性大大增加。这迫使OEM厂商严格按照安全标准来开发车辆。目前,汽车EE架构事实上的功能安全标准是ISO26262。

TC2xx/TC3xx/TC4xx都可以达到ISO26262 ASIL D的功能安全等级。英飞凌的质量管理体系秉承“零缺陷”的文化理念,在研发AURIX™ MCU产品过程中拥有一支专业的功能安全开发和管理团队,参与MCU设计,开发和验证中的各个流程。英飞凌不仅可以提供ASIL D功能安全等级的MCU产品,同时还可以提供完整的功能安全文档(如安全手册,FMEDA表格等)以及安全软件库 (Safety Library)。

“Figure
Figure 11: AURIX™ Safety Cornerstones

TC3xx系列MCU是全球第一个获得IEC26262-2018证书的MCU产品。

“Figure
Figure 12: TC3xx ISO26262-2018 Certification

6、信息安全

网联化是实现未来中央集中式EE架构的基础,万物互联给用户带来便利的同时,也同时会给传统汽车带来安全隐患。在中央集中式EE架构以以太网作为骨干网络,中央处理单元和区域控制器通过以太网进行通信,区域控制器则通过CAN/LIN总线和子ECU,传感器以及执行器通信。在这个网络中,任何一个ECU/传感器/执行器都可以用OTA进行升级,在这个过程中,如果升级的固件在传输的过程中被黑客非法篡改,那么将会带来严重的后果。这个就要求区域控制器可以支持加密传输,签名,验签,安全启动等功能。

TC3xx MCU内部的Full EVITA HSM模块,包含ARM Cotex-M3的处理器,AES加速引擎, PKC模块和Hash模块。AES加速引擎支持AES128算法(对称加密算法),PKC支持ECC256(非对称加密算法),SHA256,和真随机数产生器。

“Figure
Figure 13: TC3xx HSM

另外我们的第三方合作伙伴也可以提供符合AUTOSAR规范的HSM商用软件。

“Figure
Figure 14: TC3xx HSM Software

TC4xx MCU会使用全新的Cyber security realtime module (CSRM)作为可信硬件环境,其中包含最高500MHz Tricore 1.8内核,PKC模块,TRNG和CSS模块,其性能比TC3xx HSM提升5~15倍,更重要的是TC4xx MCU CSRM不仅支持EVITA Full, 而且兼容ISO21434规范。另外TC4xx CSRM除了支持原来TC3xx HSM中的算法之外,还支持SM2/3/4国密算法。

“Figure
Figure 15: TC4xx CSRM

7、低功耗

随着电子化程度的推进,高功率及高算力芯片使用率的提升,整车负载的用电需求量也在不断提高。功耗问题处理不好,尤其对新能源车来说,会直接影响其续航里程、成本和客户体验。如何一方面满足功能需求,同时将功耗降到最低,除了系统设计上的优化外,在元器件选型时也要关注不同模式下的功耗指标。

TC3xx/TC4xx MCU把供电域分为主供电域(Power-On Domain)和休眠域两部分(Standby Domain)。主供电域由Vext提供电源,休眠域由Vevrsb提供电源,Vext和Vevrsb可以接在一起,也可以分成两个独立电源供电。当MCU进入休眠模式后,主供电域关闭,休眠域持续工作。在休眠域中有一个休眠控制器(SCR, Standby Controller),它主要以8位的8051内核构成,也可以进行编程,这样就极大得提高了在休眠模式下对于唤醒模式设置的灵活性。下表是SCR的基本资源和休眠模式功耗情况:

“Figure
Figure 16: SCR/Standby Current

8、延续性考虑

在OEM或者Tier-1进行区域控制器主控MCU选型时除了产品本身符合应用需求之外,一般还需要考虑研发时间和成本。MCU是ECU中最复杂的半导体器件,研发团队需要花很长时间才能熟悉一个MCU平台。目前TC3xx MCU产品已经在国内多家OEM的区域控制器中得到广泛的应用,这类区域控制器目前主要还是负责车身部分的控制。TC4xx MCU对于TC3xx MCU有很好的兼容性考虑,主要有下面因素:

开发速度:

TC3xx是基于TC1.6.2内核,而TC4xx是基于TC1.8内核,TC1.8兼容TC1.6.2。TC4xx的开发环境和TC3xx完全一样(编译器,调试器等),如果研发工程师已经熟悉TC3xx开发环境,那么对于TC4xx可以迅速上手。

软硬件兼容:

TC4xx和TC3xx大部分外设资源都保持一致,引脚分配也保持很大部分的兼容性。因此,硬件工程师可以沿用大部分之前的设计经验,软件工程师可以沿用各个外设模块的理解,无需再学习一遍。对于相同部分的外设资源,MCAL部分的配置也是保持不变的。

安全概念:

TC4xx沿用了大部分TC3xx的安全概念,例如CPU锁步,Flash/RAM ECC保护,电源和时钟检测等。因此,对于功能安全开发部分,如果之前是基于TC3xx MCU进行开发的,TC4xx也可以沿用大部分的功能安全开发和设计理念。

可靠性:

TriCore™内核推出至今已经有20年以上的时间,被多家OEM广泛使用。TC3xx/TC4xx MCU中的很多外设模块也是很老的IP模块,经过20多年的迭代和更新,目前已经变得非常稳定和可靠。

“Figure
Figure 17: TC3xx to TC4xx Synergies

来源:英飞凌汽车电子生态圈
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 162

页面

订阅 RSS - 控制器