堆栈

学习STM32单片机的时候,总是能遇到“堆栈”这个概念。分享本文,希望对你理解堆栈有帮助。

对于了解一点汇编编程的人,就可以知道,堆栈是内存中一段连续的存储区域,用来保存一些临时数据。堆栈操作由PUSH、POP两条指令来完成。而程序内存可以分为几个区:

  • 栈区(stack)

  • 堆区(Heap)

  • 全局区(static)

  • 文字常亮区程序代码区

程序编译之后,全局变量,静态变量已经分配好内存空间,在函数运行时,程序需要为局部变量分配栈空间,当中断来时,也需要将函数指针入栈,保护现场,以便于中断处理完之后再回到之前执行的函数。
栈是从高到低分配,堆是从低到高分配。

普通单片机与STM32单片机中堆栈的区别

普通单片机启动时,不需要用bootloader将代码从ROM搬移到RAM。

但是STM32单片机需要。

这里我们可以先看看单片机程序执行的过程,单片机执行分三个步骤:

  • 取指令

  • 分析指令

  • 执行指令

根据PC的值从程序存储器读出指令,送到指令寄存器。然后分析执行执行。这样单片机就从内部程序存储器去代码指令,从RAM存取相关数据。

RAM取数的速度是远高于ROM的,但是普通单片机因为本身运行频率不高,所以从ROM取指令慢并不影响。

而STM32的CPU运行的频率高,远大于从ROM读写的速度。所以需要用bootloader将代码从ROM搬移到RAM。

使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

其实堆栈就是单片机中的一些存储单元,这些存储单元被指定保存一些特殊信息,比如地址(保护断点)和数据(保护现场)。

如果非要给他加几个特点的话那就是:

  • 这些存储单元中的内容都是程序执行过程中被中断打断时,事故现场的一些相关参数。如果不保存这些参数,单片机执行完中断函数后就无法回到主程序继续执行了。

  • 这些存储单元的地址被记在了一个叫做堆栈指针(SP)的地方。

结合STM32的开发讲述堆栈

从上面的描述可以看得出来,在代码中是如何占用堆和栈的。可能很多人还是无法理解,这里再结合STM32的开发过程中与堆栈相关的内容来进行讲述。

如何设置STM32的堆栈大小?

在基于MDK的启动文件开始,有一段汇编代码是分配堆栈大小的。

1.png

这里重点知道堆栈数值大小就行。还有一段AREA(区域),表示分配一段堆栈数据段。数值大小可以自己修改,也可以使用STM32CubeMX数值大小配置,如下图所示。

2.png

STM32F1默认设置值0x400,也就是1K大小。

Stack_Size EQU 0x400

函数体内局部变量:

void Fun(void){ char i; int Tmp[256]; //...}

局部变量总共占用了256*4 + 1字节的栈空间。所以,在函数内有较多局部变量时,就需要注意是否超过我们配置的堆栈大小。

函数参数:

void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)

这里要强调一点:传递指针只占4字节,如果传递的是结构体,就会占用结构大小空间。提示:在函数嵌套,递归时,系统仍会占用栈空间。

堆(Heap)的默认设置0x200(512)字节。

Heap_Size EQU 0x200

大部分人应该很少使用malloc来分配堆空间。虽然堆上的数据只要程序员不释放空间就可以一直访问,但是,如果忘记了释放堆内存,那么将会造成内存泄漏,甚至致命的潜在错误。

MDK中RAM占用大小分析

经常在线调试的人,可能会分析一些底层的内容。这里结合MDK-ARM来分析一下RAM占用大小的问题。在MDK编译之后,会有一段RAM大小信息:

3.png

这里4+6=1640,转换成16进制就是0x668,在进行在调试时,会出现:

4.png

这个MSP就是主堆栈指针,一般我们复位之后指向的位置,复位指向的其实是栈顶:

5.png

而MSP指向地址0x20000668是0x20000000偏移0x668而得来。具体哪些地方占用了RAM,可以参看map文件中【Image Symbol Table】处的内容:

6.png

来源:嵌入式Linux

免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:cathy@eetrend.com)。

围观 29

学习STM32单片机的时候,总是能遇到“堆栈”这个概念。分享本文,希望对你理解堆栈有帮助。

对于了解一点汇编编程的人,就可以知道,堆栈是内存中一段连续的存储区域,用来保存一些临时数据。堆栈操作由PUSH、POP两条指令来完成。而程序内存可以分为几个区:

  • 栈区(stack)

  • 堆区(Heap)

  • 全局区(static)

  • 文字常亮区程序代码区

程序编译之后,全局变量,静态变量已经分配好内存空间,在函数运行时,程序需要为局部变量分配栈空间,当中断来时,也需要将函数指针入栈,保护现场,以便于中断处理完之后再回到之前执行的函数。

栈是从高到低分配,堆是从低到高分配。

普通单片机与STM32单片机中堆栈的区别

普通单片机启动时,不需要用bootloader将代码从ROM搬移到RAM。

但是STM32单片机需要。

这里我们可以先看看单片机程序执行的过程,单片机执行分三个步骤:

  • 取指令

  • 分析指令

  • 执行指令

根据PC的值从程序存储器读出指令,送到指令寄存器。然后分析执行执行。这样单片机就从内部程序存储器去代码指令,从RAM存取相关数据。

RAM取数的速度是远高于ROM的,但是普通单片机因为本身运行频率不高,所以从ROM取指令慢并不影响。

而STM32的CPU运行的频率高,远大于从ROM读写的速度。所以需要用bootloader将代码从ROM搬移到RAM。

使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

其实堆栈就是单片机中的一些存储单元,这些存储单元被指定保存一些特殊信息,比如地址(保护断点)和数据(保护现场)。

如果非要给他加几个特点的话那就是:

  • 这些存储单元中的内容都是程序执行过程中被中断打断时,事故现场的一些相关参数。如果不保存这些参数,单片机执行完中断函数后就无法回到主程序继续执行了。

  • 这些存储单元的地址被记在了一个叫做堆栈指针(SP)的地方。

结合STM32的开发讲述堆栈

从上面的描述可以看得出来,在代码中是如何占用堆和栈的。可能很多人还是无法理解,这里再结合STM32的开发过程中与堆栈相关的内容来进行讲述。

如何设置STM32的堆栈大小?

在基于MDK的启动文件开始,有一段汇编代码是分配堆栈大小的。

“详解STM32单片机的堆栈"

这里重点知道堆栈数值大小就行。还有一段AREA(区域),表示分配一段堆栈数据段。数值大小可以自己修改,也可以使用STM32CubeMX数值大小配置,如下图所示。

“详解STM32单片机的堆栈"

STM32F1默认设置值0x400,也就是1K大小。

Stack_Size EQU 0x400

函数体内局部变量:

void Fun(void){ char i; int Tmp[256]; //...}

局部变量总共占用了256*4 + 1字节的栈空间。所以,在函数内有较多局部变量时,就需要注意是否超过我们配置的堆栈大小。

函数参数:

void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)

这里要强调一点:传递指针只占4字节,如果传递的是结构体,就会占用结构大小空间。提示:在函数嵌套,递归时,系统仍会占用栈空间。

堆(Heap)的默认设置0x200(512)字节。

Heap_Size EQU 0x200

大部分人应该很少使用malloc来分配堆空间。虽然堆上的数据只要程序员不释放空间就可以一直访问,但是,如果忘记了释放堆内存,那么将会造成内存泄漏,甚至致命的潜在错误。

MDK中RAM占用大小分析

经常在线调试的人,可能会分析一些底层的内容。这里结合MDK-ARM来分析一下RAM占用大小的问题。在MDK编译之后,会有一段RAM大小信息:

“详解STM32单片机的堆栈"

这里4+6=1640,转换成16进制就是0x668,在进行在调试时,会出现:

“详解STM32单片机的堆栈"

这个MSP就是主堆栈指针,一般我们复位之后指向的位置,复位指向的其实是栈顶:

“详解STM32单片机的堆栈"

而MSP指向地址0x20000668是0x20000000偏移0x668而得来。具体哪些地方占用了RAM,可以参看map文件中【Image Symbol Table】处的内容:

“详解STM32单片机的堆栈"

来源:STM32嵌入式开发
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理(联系邮箱:
cathy@eetrend.com)。

围观 344

因为单片机有CPU、存储器、IO等等,使他(人性化一点以配合下文)看起来就像一个比较小的计算机,所以,在理解单片机的时候如果能把你之前有的那些也许仅仅是直觉上的对计算机的理解融入进来的话,可能会对你学习单片机的概念有极大的帮助,至少对于我是这样的。

我想在关于单片机的众多让你头晕脑胀、摸不着头脑甚至想撞墙的概念里面,“堆栈”可能是其中最可恶的一个,因为即使单单是从汉语的角度来理解这个词就已经让你很晕了,其实我最初也想不通这是哪位大侠的创意,不过不用担心,这里我们完全不去讨论关于这个词的问题(这个词用得其实很好“堆”和“栈”都有他们各自的意思,准确的概括了这个区域的功能,有兴趣可以Baidu一下),这里我会打一个比较有趣的比方,以此来绕过那些令你想撞墙的概念,并使你在直觉上对“堆栈”这个概念有一个深刻的理解。

你基本上应该清楚,单片机里面是有存储区和CPU的,如果你不清楚,那么我刚刚告诉你了,请记住。现在,请你把单片中的CPU想成一个人(你完全可以把他想成是你宿舍的那个天天和你吵嘴的同学,一会你就会发现这会非常有趣),在这里就叫他C哥吧,不过这个人不同于常人,有一些特点,一会我们会慢慢说清楚,现在要告诉你的关于这个人的第一个特点是:他的记忆能力很差。下面,请你把存储区想象成一个一个排好的小盒子,这些盒子的作用大致可以分成两类:1、保存写有你命令的纸条,比如你在某个盒子里面的纸条上写着:去洗我的袜子!;2、保存你的一些东西,比如你那双正在污染宿舍空气的臭袜子。因为C哥是一个记忆力不怎么好的人,所以,这些盒子都有自己的编号,以方便他查找。

那么,现在,我们可以来说明一下单片机是如何工作的了。首先,你要把所有的命令还有需要处理的东西放进那些小盒子,比如刚才提到的你那双待洗的袜子还有那张纸条,这时你应该发现C哥另一个特点:笨——他只会做你明确告诉他的事情,也就是说,如果你没有在纸条上写“去洗我的袜子!”,那么C哥极有可能会无动于衷地看着你的袜子直到他被熏晕倒,当然,更可能的情况是他根本找不到你的袜子…好了,当你把要做的事情和该怎么做写到盒子里之后,下面的任务就交给C哥了。C哥做事真的很讲原则,他会按照你给定的顺序或者——如果你没有给定的话,根据盒子上面的编号按照从小到大的顺序——一个一个地打开盒子,读取里面的命令、处理相应的事件,直到所有的事情都执行完毕,他就会休息。请你牢记这个简单而有趣的过程,因为其实单片机就是这样工作的,当然,这里忽略了许多细节,但是这对你从直觉上理解单片机的概念以及足够了。

下面,就要开始说明堆栈这个概念了,思来想去,还是觉得如果直接把“堆栈”这个词用到文中来,实在不符合本文的风格,考虑到其实“堆栈”也是存贮区(这一点你要记住,堆栈并不是一个像专用寄存器那样专门的一个区域,它是由你在通用RAM区指定的。),按照本文的说法也就是一些盒子,所以,现在我们把“堆栈”改名叫“记忆盒子”,你可以感觉到,“堆栈”的作用和记忆有极大的关系,不过你也不用在这里纠结这个名字的由来,下面我会说的。

现在,请注意,我要开始解释“记忆盒子”了,也就是“堆栈”。大致上说,“记忆盒子”的作用是当C哥执行某任务到一半的时候突然有了更紧急的是事情要执行的时候用来保存当前任务的(包括盒子的编号和盒子里面的东西)。这么说你肯定晕了,其实,通俗一点,就是当C哥洗袜子洗到一半的时候突然接到你的命令要去打开另一个盒子(那个盒子里的纸条上可能写着“给我换尿布”)并执行里面的命令,因为C哥记忆力很差,以至于他做完那件紧急的事情后记不起要回到哪个盒子来继续执行“洗袜子”这个命令,这时候,他要把现在手头的东西保存到“记忆盒子”里,要保存的东西有:1、放着纸条和袜子的盒子的编号(注意这里其实是两项内容);2、那双袜子。这样,当他执行完紧急任务后会去记忆盒子里,从里面找到两张纸条,和一双袜子(这个时候C哥还是没有想起来他要洗袜子,他必须要到那张写着洗袜子命令的纸条),他按照两张纸条的信息知道自己要去哪个盒子去洗袜子,并在那里继续完成洗袜子的任务。你可能会发现,在这一段的解释里面有一个重要的漏洞,那就是在C哥执行完紧急任务后他是如何知道储存着原来的任务信息的盒子的编号是存储在哪个“记忆盒子”里呢?别着急,下面我会解释的。

从本质来说,“记忆盒子”与普通的盒子是没有区别的,他们都是单片机里面的存储单元,证明这一点的最好证据就是堆栈是需要你来指定的,也就是说,你要预先把一些盒子指定为“记忆盒子”。下面,说明一下是如何指定“记忆盒子”的。其实这个过程很简单,在单片机的专用寄存器里面有一个SP指针(81H),这个指针里面记录着堆栈的开始处的地址。用符合本文的话来解释就是,C哥的衣服上有一个口袋(也就是SP指针),这个口袋里面的“神奇纸条”上记录着第一个“记忆盒子”的编号,而指定“记忆盒子”的过程就是你在这张“神奇纸条”上写上一个盒子的编号(作为第一个“记忆盒子”的编号),这个纸条会自动地将纸条上的编号加1或者减1,所以,某个目前并不确定的区域内盒子具备了成为“记忆盒子”的可能,注意,堆栈的大小是不能规定的,这就是为什么用“生长”这个词来形容堆栈。

现在,关于堆栈的概念基本上都介绍完了,但是,我知道,你可能还是很晕,甚至比看之前还晕,那是因为刚才叙述的这个过程是分开的,而且逻辑上并不是顺序的,下面,顺序的说一下,相信你马上就明白了。

主角仍然是傻傻笨笨但任劳任怨的C哥,他一个一个的打开盒子按照里面的纸条上的说明执行你规定的任务。而你,为了防止他在执行复杂任务时犯傻,把一个盒子指定为“记忆盒子”,并把这个“记忆盒子”的位置写在了一张 “神奇纸条”上放在了C哥的口袋里。现在,C哥正在洗你的袜子,这个时候,他突然接到你的命令要去给你换尿布,而C哥知道自己很笨,所以他自动地掏出了口袋里的纸条,找到了第一个“记忆盒子”,然后拿出一张空白纸条,把装着“给我洗袜子”那张纸条的盒子的编号写在了上面并放进“记忆盒子”。然后,他把“神奇纸条”放回了口袋里。当这个任务完成后“神奇纸条”会自动将写在它上面的编号加1,也就是将一个新的、空的“记忆盒子”的编号写在上面。之后,他会按照刚才的过程把装着袜子的那个盒子的编号以及袜子本身分别放进不同的记忆盒子(现在已经有三个盒子成为“记忆盒子”,堆栈已经长大了,红色下划线的字体就是这三个盒子里的内容,注意是有先后顺序的)。再然后,他就去给你换尿布了…

现在,尿布换完了,不过,果不其然,C哥完全忘记了他要给你洗袜子这件事情了,不过,他记得一件事,那就是看口袋里的纸条。于是,他摸出了口袋里的纸条,上面当然是一个“记忆盒子”的编号,他按照编号找到了第一个“记忆盒子”(按照上一段的顺序应该是第三个“记忆盒子”),里面应该是一双你的袜子,于是他拿到了你的袜子。但是,他还是不知道该干什么,于是他再次摸出了“神奇纸条”,这时,纸条上的编号已经自动减1了,于是,他找到了新的“记忆盒子”,里面的纸条上记录着袜子本来放置的盒子的编号,于是,他把袜子放到了那个盒子里。恩,你可以想到,现在C哥还是不知道要对袜子做些什么,他耐心的又一次摸出了那张“神奇纸条”,这次按照上面的编号,他找到了一张纸条,上面写着的仍然是一个盒子的编号。C哥按照编号找到了那个盒子,发现那个盒子里的纸条上写着“给我洗袜子!”…至此,C哥又回到了原来的任务——洗袜子。

现在,我希望你已经明白了,堆栈其实就是你指定的一个些存储单元,这些存储单元被指定只用来保存一些特殊信息,比如地址(保护断点)或者一些数据(保护现场),如果你一定要说这个存储区有什么特别的话,那就是:1、这些存储单元内的内容都是CPU在执行某任务中途被打断时的一些相关参数;2、这些存储单元的地址被记在了一个叫堆栈指针的地方,也就是C哥口袋里的那张纸条上!

来源:单片机与嵌入式

围观 32

今天仔细读了一下内存管理的代码,然后还有看了堆栈的相关知识,把以前不太明白的一些东西想通了,写下来,方便以后查看,也想大家看了能指出哪里不对,然后修改。

STM32内存管理以及堆和栈的理解

首先,先看一下stm32的存储器结构。

​Flash,SRAM寄存器和输入输出端口被组织在同一个4GB的线性地址空间内。可访问的存储器空间被分成8个主要块,每个块为512MB。

FLASH存储下载的程序。

SRAM是存储运行程序中的数据。

所以,只要你不外扩存储器,写完的程序中的所有东西也就会出现在这两个存储器中。

这是一个前提!

堆栈的认知

1、STM32中的堆栈。

这个我产生过混淆,导致了很多逻辑上的混乱。首先要说明的是单片机是一种集成电路芯片,集成CPU、RAM、ROM、多种I/O口和中断系统、定时器/计数器等功能。CPU中包括了各种总线电路,计算电路,逻辑电路,还有各种寄存器。Stm32有通用寄存器R0‐R15 以及一些特殊功能寄存器,其中包括了堆栈指针寄存器。当stm32正常运行程序的时候,来了一个中断,CPU就需要将寄存器中的值压栈到RAM里,然后将数据所在的地址存放在堆栈寄存器中。等中断处理完成退出时,再将数据出栈到之前的寄存器中,这个在C语言里是自动完成的。

2、编程中的堆栈。

在编程中很多时候会提到堆栈这个东西,准确的说这个就是RAM中的一个区域。我们先来了解几个说明:

(1) 程序中的所有内容最终只会出现在flash,ram里(不外扩)。

(2) 段的划分,是将类似数据种类存储在一个区域里,方便管理,但正如上面所说,不管什么段的数据,都是最终在flash和ram里面。

C语言上分为栈、堆、bss、data、code段。具体每个段具体是存储什么数据的,直接百度吧。重点分析一下STM32以及在MDK里面段的划分。

MDK下Code,RO-data,RW-data,ZI-data这几个段:

Code是存储程序代码的。

​RO-data是存储const常量和指令。

​RW-data是存储初始化值不为0的全局变量。

​ZI-data是存储未初始化的全局变量或初始化值为0的全局变量。

Flash=Code + RO Data + RW Data;

RAM= RW-data+ZI-data;

这个是MDK编译之后能够得到的每个段的大小,也就能得到占用相应的FLASH和RAM的大小,但是还有两个数据段也会占用RAM,但是是在程序运行的时候,才会占用,那就是堆和栈。在stm32的启动文件.s文件里面,就有堆栈的设置,其实这个堆栈的内存占用就是在上面RAM分配给RW-data+ZI-data之后的地址开始分配的。

堆:是编译器调用动态内存分配的内存区域。

栈:是程序运行的时候局部变量的地方,所以局部变量用数组太大了都有可能造成栈溢出。

堆栈的大小在编译器编译之后是不知道的,只有运行的时候才知道,所以需要注意一点,就是别造成堆栈溢出了。。。不然就等着hardfault找你吧。

3、OS中的堆栈及其内存管理。

嵌入式系统的堆栈,不管是用什么方法来得到内存,感觉他的方式都和编程中的堆差不多。目前我知道两种获得内存情况:

(1)用庞大的全局变量数组来圈住一块内存,然后将这个内存拿来进行内存管理和分配。这种情况下,堆栈占用的内存就是上面说的:如果没有初始化数组,或者数组的初始化值为0,堆栈就是占用的RAM的ZI-data部分;如果数组初始化值不为0,堆栈就占用的RAM的RW-data部分。这种方式的好处是容易从逻辑上知道数据的来由和去向。

(2)​就是把编译器没有用掉的RAM部分拿来做内存分配,也就是除掉RW-data+ZI-data+编译器堆+编译器栈后剩下的RAM内存中的一部分或者全部进行内存管理和分配。这样的情况下就只需要知道内存剩下部分的首地址和内存的尾地址,然后要用多少内存,就用首地址开始挖,做一个链表,把内存获取和释放相关信息链接起来,就能及时的对内存进行管理了。内存管理的算法多种多样,不详说,这样的情况下:OS的内存分配和自身局部变量或者全局变量不冲突,之前我就在这上面纠结了很久,以为函数里面的变量也是从系统的动态内存中得来的。这种方式感觉更加能够明白自己地址的开始和结束。

这两种方法我感觉没有谁更高明,因为只是一个内存的获取方式,高明的在于内存的管理和分配。​

转自:https://blog.csdn.net/c12345423/article/details/53004747

围观 511

用C语言进行MCS51系列单片机程序设计是单片机开发和应用的必然趋势。Keil公司的C51编译器支持经典8051和8051派生产品的版本,通称为Cx51。应该说,Cx51是C语言在MCS51单片机上的扩展,既有C语言的共性,又有它自己的特点。本文介绍的是Cx51程序设计时堆栈的计算方法。   

1.堆栈的溢出问题。MCS51系列单片机将堆栈设置在片内RAM中,由于片内RAM资源有限,堆栈区的范围也是有限的。堆栈区留得太大,会减少其他数据的存放空间,留得太少则很容易溢出。所谓堆栈溢出,是指在堆栈区已经满了的时候还要进行新的压栈操作,这时只好将压栈的内容存放到非堆栈区的特殊功能寄存器(SFR)中或者堆栈外的数据区中。特殊功能寄存器的内容影响系统的状态,数据区的内容又很容易被程序修改,这样一来,之后进行出栈操作(如子程序返回)时内容已变样,程序也就乱套了。因此,堆栈区必须留够,宁可大一些。要在Cx51程序设计中防止堆栈的溢出,要解决两个问题:第一,精确计算系统分配给用户的堆栈大小,假设是M;第二,精确计算用户需要堆栈的大小,假设是N。要求M≥N,下面分别分析这两个问题。

2.计算系统分配给用户的堆栈大小Cx51程序设计中,因为动态局部变量是长驻内存中的,实际上相当于局部静态变量,即使在函数调用结束时也不释放空间(这一点不同于标准C语言)。Cx51编译器按照用户的设置,将所有的变量存放在片内和片外的RAM中。片内变量分配好空间后,将剩下的空间全部作为堆栈空间,这个空间是最大可能的堆栈空间。当然,因为Cx51是一种可以访问寄存器的C语言(特殊功能寄存器),因此可在程序中访问SP,将堆栈空间设置得小一点。不过,一般没有人这么做。

本文只是讨论放在片内RAM的变量。我们把变量分为两种情况:

① 用作函数的参数和函数返回值的局部变量。这种变量尽量在寄存器组中存放。为了讨论方便,假设统一用寄存器组0,具体的地址为0x00~0x07。最多可以传递3个参数,如果参数的个数比较多,就将多余的参数放到内存(0x08以后的地址)中存放。这里,假设每个函数的参数都不大于3个。

② 我们在程序中定义的全局变量,以及不是用作函数的参数和函数返回值的局部变量。以上两种变量在内存中0x08地址以后存放,存放完毕后将堆栈指针SP指向分配了变量的片内RAM的最后一个字节。因为MCS51单片机的堆栈是一种满递增堆栈且堆栈的宽度为8位,所以在需要压栈操作时将堆栈指针先加1,后入栈有效内容。有了以上规则,就可以精确地计算出系统分配给用户的堆栈空间。以求两个数的最大公约数和最小公倍数的函数为例,代码如下:

#include <REG52.H>  

unsigned char max(unsigned char a, unsigned char b);   

unsigned char min(unsigned char a, unsigned char b);   

unsigned char M;  

void main (void)

{   

unsigned char  n;   

M = max(12, 9);  

     n = min(12, 9);   

}  

unsigned char max(unsigned char a, unsigned char b)

{   

while(a != b)

{   

if(a > b)   

a = a - b;   

else

  b = b - a;  

}

  return a;  

 }   

unsigned char min(unsigned char a, unsigned char b)

{  

 unsigned char k;   

k = ab/M;  

 return k;   

}  

这段程序中资源的分配情况如下:一个全变量M(无符号字符型)存放最大公约数;主函数中定义一个局部变量n(无符号字符型)存放最小公倍数;求最大公约数的函数unsigned char max(unsigned char a, unsigned char b),有两个参数a和b;求最小公倍数的函数unsigned char min(unsigned char a, unsigned char b),有两个参数a和b,并且定义了一个变量k存放函数的返回值。可以由此计算出系统分配给变量的空间。函数的参数和返回值在工作寄存器组中存放,所以不占用0x08地址以后的空间。系统只给变量M和变量n分配存储空间,这两个变量占两个字节(地址为0x08和0x09),则堆栈指针SP应该指向0x09。Cx51系统编译后生成代码的系统资源占用情况如下:全局变量M的地址为0x08,n的地址为0x09,SP的值为0x09。这与我们的计算结果相符。   

3.计算用户需要堆栈的大小。堆栈区到底留多大才算足够呢? Cx51程序设计中,用户需要堆栈的大小可以从普通子函数和中断子程序的嵌套层数来计算。普通子函数的调用比较简单,每次调用时就是将函数的返回地址保存在堆栈中,这个地址占两个字节。函数嵌套调用时,从最内层的子函数算起,总的堆栈需求字节数为嵌套的层数乘以2。中断子程序的堆栈需求分为两种情况:

① 中断子程序使用中断发生前的寄存器组。在中断发生时,保存中断子程序的返回地址需要2个字节。中断发生后,在中断子程序中系统会自动进行如下操作:将ACC、B、DPH、DPL、PSW、R0~R7共13个寄存器压栈。加上中断返回地址,中断的堆栈需求为15个字节。

② 中断子程序使用自己专用的寄存器组。这种情况下不需要保存R0~R7的内容,可以减少堆栈需求,其他的内容仍需要压栈保护。中断发生时,保存中断子程序的返回地址需要2个字节。中断发生后,在中断子程序中系统会自动进行如下操作:将ACC、B、DPH、DPL、PSW共5个寄存器压栈。加上、中断返回地址,这种堆栈的需求为7个字节。但是这种情况应该注意:如果中断子程序中调用子函数,且函数需要参数和返回值,则被调用的子函数和中断子程序要使用相同的寄存器组,否则会出现不可预料的后果。

以一个温度测试系统为例。系统采用8051作为处理器,温度信号在A/D转换结束后通过外部中断0提醒单片机接收处理。定时中断0作为监控程序,中断周期为20 ms。温度信号可以自动测量(每秒一次)或者手动测量(按测量键后测量),这两种测量方法可以通过控制键切换。中断子程序和普通子函数的嵌套情况为:在定时中断程序中调用显示子程序,外部中断0内部没有函数调用。

部分程序如下:

void int0(void) interrupt 0 using 1

{

   读取转换数据;

   数据处理;  

}

void time0 (void) interrupt 1

{

   计数值重装;   

读键;

按键处理;

leddisp(adat);//显示

}

void main (void)

{

 相关数据初始化和数码显示自检;   

外部中断和定时器初始化设置;

单片机休眠;

}

void leddisp(unsigned char pt)

{

  用串口工作方式0发送显示数据,并经过74LS164转换后静态显示;   

}

接下来分析这段程序的最大堆栈需求。假设定时器0中断时,调用了显示函数void leddisp(unsigned char pt),在调用显示函数时A/D转换结束发生了外部中断0的中断。这时应该是程序对堆栈的最大需求,堆栈的大小是:定时器0(15字节)+显示函数(2字节)+外部中断0(7字节)=24字节。  

结语:通过精确的计算编译系统分配给用户的堆栈空间和用户自己最大的堆栈需求,不仅能从根本上解决堆栈溢出的问题,还可以很好地安排单片机比较紧张的资源。此外,通过在片内存储器存放适量局部变量,还可以有效地提高软件的执行速度。

转自:Bingoo&Echo - 博客园

围观 781

在计机领域,堆栈是一个不容忽视的概念,我们编写的C语言程序基本上都要用到。但对于很多的初学着来说,堆栈是一个很模糊的概念。堆栈:一种数据结构、一个在程序运行时用于存放的地方,这可能是很多初学者的认识,因为我曾经就是这么想的和汇编语言中的堆栈一词混为一谈。我身边的一些编程的朋友以及在网上看帖遇到的朋友中有好多也说不清堆栈,所以我想有必要给大家分享一下我对堆栈的看法,有说的不对的地方请朋友们不吝赐教,这对于大家学习会有很大帮助。

首先了解下计算机C语言中各个变量的存放区域:
代码区(CODE): 存放函数代码;
静态数据区(DATA): 存放全局变理/静态变量;
堆区(HEAP): 是自由存储区,存放动态数据,像new,malloc()申请的空间就是堆区的;
栈区(STACK): 存放临时/局部变量。

数据结构的栈和堆
首先在数据结构上要知道堆栈,尽管我们这么称呼它,但实际上堆栈是两种数据结构:堆和栈。
堆和栈都是一种数据项按序排列的数据结构。

栈就像装数据的桶或箱子
我们先从大家比较熟悉的栈说起吧,它是一种具有 后进先出 性质的数据结构,也就是说后存放的先取,先存放的后取。这就如同我们要取出放在箱子里面底下的东西(放入的比较早的物体),我们首先要移开压在它上面的物体(放入的比较晚的物体)。

堆像一棵倒过来的树
而堆就不同了,堆是一种 经过排序的树形数据结构 ,每个结点都有一个值。通常我们所说的堆的数据结构,是指二叉堆。堆的特点是根结点的值最小(或最大),且根结点的两个子树也是一个堆。由于堆的这个特性,常用来实现优先队列, 堆的存取是随意 ,这就如同我们在图书馆的书架上取书,虽然书的摆放是有顺序的,但是我们想取任意一本时不必像栈一样,先取出前面所有的书,书架这种机制不同于箱子,我们可以直接取出我们想要的书。

内存分配中的栈和堆
然而我要说的重点并不在这,我要说的堆和栈并不是数据结构的堆和栈,之所以要说数据结构的堆和栈是为了和后面我要说的堆区和栈区区别开来,请大家一定要注意。
下面就说说C语言程序内存分配中的堆和栈,这里有必要把内存分配也提一下,大家不要嫌我啰嗦,一般情况下程序存放在Rom或Flash中,运行时需要拷到内存中执行,内存会分别存储不同的信息,如下图所示:

内存中的栈区处于相对较高的地址以地址的增长方向为上的话,栈地址是向下增长的。
栈中分配局部变量空间,堆区是向上增长的用于分配程序员申请的内存空间。另外还有静态区是分配静态变量,全局变量空间的;只读区是分配常量和程序代码空间的;以及其他一些分区。

来看一个网上很流行的经典例子:
main.cpp
int a = 0; 全局初始化区
char *p1; 全局未初始化区
main()
{
int b; 栈
char s[] = "abc"; 栈
char *p2; 栈
char *p3 = "123456"; 123456\0在常量区,p3在栈上。
static int c =0; 全局(静态)初始化区
p1 = (char *)malloc(10); 堆
p2 = (char *)malloc(20); 堆
}

0.申请方式和回收方式不同
不知道你是否有点明白了,堆和栈的第一个区别就是申请方式不同:栈(英文名称是stack)是系统自动分配空间的,例如我们定义一个 char a; 系统会自动在栈上为其开辟空间 。而堆(英文名称是heap)则是 程序员根据需要自己申请的空间 ,例如malloc(10);开辟十个字节的空间。由于 栈上的空间是自动分配自动回收的 ,所以栈上的数据的生存周期只是在函数的运行过程中,运行后就释放掉,不可以再访问。而 堆上的数据只要程序员不释放空间,就一直可以访问到 ,不过缺点是一旦忘记释放会造成内存泄露。还有其他的一些区别我认为网上的朋友总结的不错这里转述一下:

1.申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。

堆:首先应该知道 操作系统有一个记录空闲内存地址的链表 ,当系统收到程序的申请时,会遍历该链表,寻找第一个空间大于所申请空间的堆。

结点,然后将该结点从空闲结点链表中删除,并将该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的 首地址处记录本次分配的大小 ,这样,代码中的 delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正好等于申请的大小,系统会自动的 将多余的那部分重新放入空闲链表中 。

也就是说 堆会在申请后还要做一些后续的工作这就会引出申请效率的问题。

2.申请效率的比较
根据第0点和第1点可知。
栈:由系统自动分配,速度较快。但程序员是无法控制的。

堆:是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便。

3.申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块 连续的内存的区域 。这句话的意思是 栈顶的地址和栈的最大容量是系统预先规定好的 ,在 WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间较小。

堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。

4.堆和栈中的存储内容
由于栈的大小有限,所以用子函数还是有物理意义的,而不仅仅是逻辑意义。

栈:在函数调用时,第一个进栈的是 主函数中函数调用后的下一条指令 (函数调用语句的下一条可执行语句)的地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是 函数中的局部变量 。注意静态变量是不入栈的。

当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主函数中的下一条指令,程序由该点继续运行。

堆 :一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容有程序员安排。

关于存储内容还可以参考 这道题 。这道题还涉及到局部变量的存活期。

5.存取效率的比较
char s1[] = "aaaaaaaaaaaaaaa";
char *s2 = "bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;放在栈中。

但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。

比如:
#include
void main()
{
char a = 1;
char c[] = "1234567890";
char *p ="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10: a = c[1];
00401067 8A 4D F1 mov cl,byte ptr [ebp-0Fh]
0040106A 88 4D FC mov byte ptr [ebp-4],cl
11: a = p[1];
0040106D 8B 55 EC mov edx,dword ptr [ebp-14h]
00401070 8A 42 01 mov al,byte ptr [edx+1]
00401073 88 45 FC mov byte ptr [ebp-4],al

关于堆和栈区别的比喻
堆和栈的区别可以引用一位前辈的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。

使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。比喻很形象,说的很通俗易懂,不知道你是否有点收获。

来源:极客头条

围观 344
订阅 RSS - 堆栈