中断

MCS—51系列单片机内部只有两个外部中断源输入端,当外部中断源多于两个时,就必须进行扩展,下面介绍两种简单的扩展方法:

一、采用硬件请求和软件查询的方法:

这种方法是:把各个中断源通过硬件“或非(高有效,如CD4002)”(与,低有效)门引入到单片机外部中断源输入端(INT0或INT1),同时再把外部中断源送到单片机的某个输入输出端口,这样当外部中断时,通过“或非”(与)门引起单片机中断,在中断服务程序中再通过软件查询,进而转相应的中断服务程序。显然,这种方法的中断优先级取决于软件查询的次序。其硬件连接和软件编程如下:

Void zhongduan (void) interrupt 0 using 3 //中断函数

{

EX0=0;//关中断

If(P0_0=1) { *****}//中断查询

If(P0_1=1) { *****}//中断查询

If(P0_2=1) { *****}//中断查询

EX0=1;开中断

}

二、用普通二极管构成中断选择

单片机扩展中断的4种方法

扩展的8个外部中断源均通过二极管向I N T(x=0或I)请求中断。当某个外部中断源请求中断服务时输出低电平,单片机的I NT 经二极管接地电平,单片机满足响应外部中断(I N T)请求条件,响应中断,程序立即转向I NT 对应的中断入口地址处开始执行中断服务程序,通过软件查询PI.0~P1.7口外中断源的状态,以识别提出请求的外扩中断源,并转向中断服务程序为其服务,其查询顺序即为外部扩展中断源的中断优先级顺序。在图中,是选用PI.0~PI.7作为外扩中断源请求的状态信息输入端口。

有点类似第一种方法。

三、用定时器/计数器作外部中断

单片机的定时器/计数器是一个加一计数器,每当计数输入端有一个“1—0”的负跳变时,计数器加一,当加一计数器溢出时,就向CPU发出中断,利用这个特性来扩展中断的方法是:首先把定时器/计数器设置成计数方式,并预置满值,把外部中断源输入到P3口第4引脚或第5引脚(计数器输入端),这样就可以利用定时器/计数器作为单片机外部中断了。注意这种方法的中断服务的入口地址应在000BH或001BH。

四、用专用中断扩展芯片8259A

8259A是可编程中断控制接口,单片机控制八级中断。在系统中还可采用级联方式,一个主片可级联8个从片,构成64级中断处理系统。

这样在程序小于8K的情况,就可以用一片单片机实现了,而不需要用两片单片机控制,还要进行单片机点对点通讯。

转自 http://www.21ic.com/jichuzhishi/mcu/interrupt/2014-03-20/216130.html

围观 400

1 PIC 单片机 简介

PIC系列 单片机 是美国Microchip技术公司推出的高性能价格比的8位嵌入式控制器(Embedded Controller),它采用了精简指令集计算机RISC(Reduced Instruction Set Computer)和哈佛(Harvard)双总线以及两级指令流水线结构。具有高速度、低工作电压、低功耗等特点和优良的性能价格比,因而PIC系列单片机越来越受到单片机开发与应用工程技术人员的青睐。该系列独特的结构和中断资源使其在使用时与其它系列的单片机有许多不同之处。下面以PIC16CXX系列微控制器为例来介绍PIC系列单片机的中断资源特点以及应用方法。

2 中断资源的开发与屏蔽

PIC单片机的中断资源及应用

图1是PIC16C64/64A/65/65A的中断逻辑电路图,其它型号芯睡的中断资源也大致相同,只是资源多少不一而已,但它们的中断入口只有一个(入口地址在004H)。PIC 单片机 的中断大致可以分为两类。
第一类是由中断控制器INTCON直接控制的中断,包括外部引脚中断INT的RB口电平变化中断以及定时器TMRO溢出中断,它们的中断允许位和中断标志都在INTCON寄存器中。引脚中断INT和定时器TMRO溢出中断与其它微处理器相同。RB口电平变化中断是PIC 单片机 特有的中断,当把RB口高4位I/O口线设置为输入时,只要这4位I/O口线上的电平发生变化就会引起中断。RB口的电平中断特性对用户是非常有用的。用户可以直接利用这些口线的关键部位进行电平检测,并可利用中断进行保护性控制等操作;另一方面,电平中断特性还可以利用RB口的软件控制弱上拉特性组成一个矩阵键盘,并用按键唤醒CPU,这对于那些以电池供电的系统特别有用。

另一类是外围接口中断,包括定时器TMR1溢出中断、TMR溢出或匹配中断、同步串行口中断、异步串行口中断、并行从动口中断和CCP(Capture/Compare/PWM)中断等,而带A/D功能的PIC16C7X系列微处理器还有A/D转换完成中断。这些中断的允许位分别在PIE1和PIE2寄存器,而中断标志则分别在PIR1和PIR2中。

所有的中断都有自己的中断允许位和中断标志,外围接口中断不仅受各自的中断允许位控制,同时还共同受外围中断控制允许位的控制。全局中断允许位GID能够控制所有的中断。无论全局中断允许位GIE和相应的中断允许位状态如何,只要满足中断条件,各个中断标志位都会被置1。与其它微处理器不同的是:当CPU响应中断时全局中断允许闰GIF会自动被清零,中断标志位不能用硬件清零而只能用软件清零;当执行中断返回指令RETFIE时,全局中断允许位GIE会被自动置1而重新开放中断。因此,在重新开放中断之前要用软件清零有关的中断标志位,以避免产生不断地中断请求而反复进入中断。由于全局中断允许位GIE会被中断服务程序(RETFIE指令)自动置1,因此用软件清零GIE并不可靠,这一点要特别注意。用下面的程序可确保整个中断被禁止。
***************
LOOP BCF INTCON,GIE ;禁止整个中断
BTFSC INTCON,GIE ;判断全局中断是否被禁止
GOTO LOOP ;否,重新清零
…… ;继续
***************
对于外部中断事件,例如:INT引脚中断和RB口引脚电平变化中断等为边沿触发,因此,CPU在响应中断时对外部信号的要求并不苛刻。一般情况下,中断花费的时间需要3或4个指令周期,确切时间取决于中断事件发生的时刻而与指令本身的周期数无关。

3 中断的优先级

PIC系列 单片机 只有一个中断入口(004H),所有的中断都通过该入口进入中断服务子程序,至于是哪一个中断源,只有在进入中断服务子程序后查询中断标志才能确认。该单片机没规定中断的优先级,也没有用于设定中断优先级的寄存器,中断的优先级是由于中断服务子程序中断查询中断标志的顺序确定的。CPU响应一个中断并进入中断服务程序后,全局中断允许位GIE被自动清零,CPU在此期间不响应其它中断,也不能形成中断嵌套。因此,在使用中断时要合理安排查询中断标志的顺序,尽量缩短CPU在中断服务程序中逗留的时间。在用PIC系列单片机构成系统时应尽量减少中断源的个数,对于那些执行时间较长且不需采用中断方式来处理的事件,应尽量采和查询标志的方式进行处理;对于那些必须采用中断方式处理的事件,在中断服务程序中要尽量先查询对系统至关重要的事件的中断标志。另外,在退出中断服务程序时,只清除处理过的中断标志即可,而不需要将所有的中断标志清除。对于RB口电平变化中断,一方面要保存RB口每次变化后的状态,以便在下次中断时判断是哪根口线上的电平发生了变化;另一方面可以设置产生中断的口线标志,并将由于该中断而未执行的程序在中断服务程序外通过查询口线标志来执行,以减少CPU在中断服务程序中逗留的时间。

4 程序跨页时的中断处理

PIC系列 单片机 的程序存储空间是分页处理的,每页空间的大小为512字节到4k字节不等。页程序计数器PC是一个13位宽的增量寄存器,其低8位PCL是一个可读/写寄存器,其高字节PCH(有效位为5位)不能直接进行读/写操作,它通过一个8位保护寄存器PCLATH把高5位地址传递给程序计数器的高字节。当一个中断被响应时,PC中的断点地址自动被压栈(PUSH)保护;而当执行RETFIE指令时,堆栈中的断点地址回弹到(POP)程序存储器PC中。无论是压栈操作还是出栈操作,它们都不影响PCLATH寄存器的内容。同时,CPU响应中断并跳转到中断入口地址时,都只能在本页内跳转而不影响PLCATH寄存器的内容。另外,在中断入口安排的是GOTO语句,而GOTO语句也只能在本页跳转。当中断服务程序存放在程序存储器的第一页且CPU在执行非第一页内程序时,响应中断将导致中断入口地址和中断返回地址错误而引起程序混乱。下面以PIC16C65A来说明这个问题的解决办法。

PIC16C65A的片内程序存储器为4k,分为两页,每页2k。假设中断服务程序存放在第一页(0000H-07FFH),通常这样做是因为中断入口地址在第一页,因而可以减少程序量)。那么,具体程序如下:

***************
ORG 0000H
0000H GOTO START
ORG 0004H
***************
0004H GOTO PRO-INT
ORG 0005H
0005H START ……
……
0234H PRO-INT……
……
RETFIE
***************

通过汇编程序编译可知,在程序存储器0004H单元存放的代码是2A34H,当CPU在程序存储器第一页响应中断时,程序先跳到0004H,然后跳到0234H执行,正常进入中断,执行完后能正常返回。当CPU在程序存储器第二页响应中断时,由于PCLATH的D4D3(页选择位)为01,CPU4执行“GOTO PRO-INT”时的代码虽然是2A34H,但程序不是跳到0234H执行,而是跳至0A34H执行。显然,程序执行错误。

解决这一问题的方面是在程序存储器0A34H处安排一段程序,在中断程序结束时判断CPU响应中断时程序所处的位置,从而使程序根据该信息合理设置页选择位,然后再返回中断。

******************
ORG 0A34H
BSF RAM,b ;设置在程序执行到第二页时CPU响应中断的标志
BCF PCLATH,3 ;将PC切换到第一页
GOTO PRO-INT ;程序跳转到中断服务程序
*******************
在指令RETFIE前应增加的程序如下:
******************
BTFSC RAM,b ;判断CPU响应中断前程序所在位置
BSF PCLATH,3 ;设置页选择位
RETFIE
******************

以上程序中的RAM是一个内存单元,b是该单元的某一位,该位在程序初始化时清零,CPU在执行程序存储器第二页的程序并响应中断时该位置“1”。经过上述处理,CPU不管在程序存储器第一页还是第二页响应中断,都能正确进入中断服务程序并能正确返回中断前的地址。

5 利用中断唤醒CPU

PIC系列 单片机 具有休眠(SLEEP)省电工作模式,当执行一条SLEEP指令后,芯片就进入低功耗休眠模式。进入休眠状态后,主振荡器停止工作,此时芯片消耗的电流极低(在3V工作电压,32kHz时钟时典型值约1μA),这一特点对于电池供电的系统非常有利。利用中断可以将CPU从休眠状态唤醒。这些中断源包括外部INT引脚中断、RB口引脚电平改变中断和部分外围接口中断。用于唤醒休眠状态的CPU外围接口中断有:工作在异步计数器方式下的TMR1中断、SSP起始/停止位检测中断、CCP捕捉方式中断和从动并行口读写中断。其它外围接口中断因需要片内Q时钟而无法产生中断。

利用中断事件唤醒CPU与全局中断允许位GIE无关,任意一个中断允许位置1的中断源,只要产生中断就会将相应的中断标志置1,芯片将立入中断服务程序与全局中断允许位GIE的状态和紧接SLEEP指令后的那条指令有关。由于PIC系列 单片机 采用了两级指令流水线结构,在执行SLEEP指令时,下一条指令已预先取出,因此在GIE位为0时,芯片被唤醒后首先执行预先取出的那条指令;如果GIE位为1,则芯片被唤醒后执行预先取出的那条指令后紧接着转入中断入口地址再执行中断服务程序。在这种情况下,应在SLEEP指令后安排一条空操作指令NOP,以便CPU被唤醒后能立即进入中断服务程序。

总之,PIC系列单片机 是一种性能价格比很高的微控制器,正确、合理地使用其中断资源可以使系统更加完善,工作更加稳定。

来源: 电子工程世界

围观 537

一、STM32中断分组:

STM32 的每一个GPIO都能配置成一个外部中断触发源,这点也是 STM32 的强大之处。STM32 通过根据引脚的序号不同将众多中断触发源分成不同的组,比如:PA0,PB0,PC0,PD0,PE0,PF0,PG0为第一组,那么依此类推,我们能得出一共有16 组,STM32 规定,每一组中同时只能有一个中断触发源工作,那么,最多工作的也就是16个外部中断。STM32F103 的中断控制器支持 19 个外部中断/事件请求。每个中断设有状态位,每个中断/事件都有独立的触发和屏蔽设置。STM32F103 的19 个外部中断为:

线 0~15:对应外部 IO 口的输入中断。
STM32 GPIO外部中断总结
线 16:连接到 PVD 输出。

线 17:连接到 RTC 闹钟事件。

线 18:连接到 USB 唤醒事件。

二:外部中断的配置过程:

1、配置触发源GPIO口:

因为GPIO口作为触发源使用,所以将GPIO口配置成输入模式,触发模式有以下几种:

a.GPIO_Mode_AIN ,模拟输入(ADC模拟输入,或者低功耗下省电)

b.GPIO_Mode_IN_FLOATING ,浮空输入

c.GPIO_Mode_IPD ,带下拉输入

d.GPIO_Mode_IPU ,带上拉输入 

  GPIO_InitTypeDef GPIO_InitStructure;//定义结构体

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE,ENABLE);//使能时钟

  GPIO_InitStructure.GPIO_Pin  = GPIO_Pin_2;//选择IO口   PE2

  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;//设置成上拉输入

  GPIO_Init(GPIOE, &GPIO_InitStructure);//使用结构体信息进行初始化IO口

2、使能AFIO复用时钟功能:

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,ENABLE); 

3、将GPIO口与中断线映射起来: 

  GPIO_EXTILineConfig(GPIO_PortSourceGPIOE,GPIO_PinSource2);

4、中断线上进行中断初始化: 

  EXTI_InitTypeDef EXTI_InitStructure;//定义初始化结构体

  EXTI_InitStructure.EXTI_Line=EXTI_Line2; //中断线的标号 取值范围为EXTI_Line0~EXTI_Line15

  EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt;//中断模式,可选值为中断 EXTI_Mode_Interrupt 和事件 EXTI_Mode_Event。

  EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;//触发方式,可以是下降沿触发 EXTI_Trigger_Falling,上升沿触发 EXTI_Trigger_Rising,或者任意电平(上升沿和下降沿)触发EXTI_Trigger_Rising_Falling

  EXTI_InitStructure.EXTI_LineCmd = ENABLE;

  EXTI_Init(&EXTI_InitStructure);//根据结构体信息进行初始化

5、中断优先级配置: 

  NVIC_InitTypeDef NVIC_InitStructure;//定义结构体

  NVIC_InitStructure.NVIC_IRQChannel = EXTI2_IRQn; //使能外部中断所在的通道

  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //抢占优先级 2, 

  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x02; //子优先级 2

  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道 

  NVIC_Init(&NVIC_InitStructure); //根据结构体信息进行优先级初始化 

6、外部中断服务函数的编写:

外部中断函数分别为:

EXPORT EXTI0_IRQHandler

EXPORT EXTI1_IRQHandler

EXPOR T EXTI2_IRQHandler

EXPORT EXTI3_IRQHandler

EXPORT EXTI4_IRQHandler

EXPORT EXTI9_5_IRQHandler

EXPORT EXTI15_10_IRQHandler

中断线 0-4 每个中断线对应一个中断函数,中断线 5-9 共用中断函数 EXTI9_5_IRQHandler,中断线 10-15 共用中断函数 EXTI15_10_IRQHandler。 

  void EXTI2_IRQHandler(void)
  {
    if(EXTI_GetITStatus(EXTI_Line2)!=RESET)//判断某个线上的中断是否发生 

    {
      中断逻辑…
      EXTI_ClearITPendingBit(EXTI_Line2);   //清除 LINE 上的中断标志位
    }     
  }

三、关于使用GPIO口接按键进行外部中断的配置说明:

使用按键进行外部中断的时候,一般都需要进行按键延时消抖以及松手检测的相关处理,中断函数可以参看以下代码:

  void EXTI2_IRQHandler(void)
  {
    delay_ms(10);//延时消抖
    if(KEY2==0)    //按键真的被按下
      {
        LED0=!LED0;
      }
    while(KEY2!=0);//等待松手
    EXTI_ClearITPendingBit(EXTI_Line2); //清楚中断标志位 
  }

当然,如果你的按键是允许长按功能的,那么就进行别的逻辑操作,这里不作研究。

转自: 粥巴坨的博客

围观 543

学习使用就是理解单片机硬件结构,以及内部资源的应用,在汇编或C语言中学会各种功能的初始化设置,以及实现各种功能的程序编制。以下是小编的一些经验:

第一步:数字I/O的使用

使用按钮输入信号,发光二极管显示输出电平,就可以学习引脚的数字I/O功能,在按下某个按钮后,某发光二极管发亮,这就是数字电路中组合逻辑的功能,虽然很简单,但是可以学习一般的单片机编程思想,例如,必须设置很多寄存器对引脚进行初始化处理,才能使引脚具备有数字输入和输出输出功能。每使用单片机的一个功能,就要对控制该功能的寄存器进行设置,这就是单片机编程的特点,千万不要怕麻烦,所有的单片机都是这样。要注意的是两个功能使用同一组I/O口,比如LCD和LED例程众都是使用PB这一组的,如果两者结合,会有冲突,达不到预期的效果,建议不同的模块使用不同的IO口。

第二步:定时器的使用

学会定时器的使用,就可以用单片机实现时序电路,时序电路的功能是强大的,在工业、家用电气设备的控制中有很多应用,例如,可以用单片机实现一个具有一个按钮的楼道灯开关,该开关在按钮按下一次后,灯亮3分钟后自动灭,当按钮连续按下两次后,灯常亮不灭,当按钮按下时间超过2s,则灯灭。数字集成电路可以实现时序电路,可编程逻辑器件(PLD)可以实现时序电路,可编程控制器(PLC)也可以实现时序电路,但是只有单片机实现起来最简单,成本最低。

定时器的使用是非常重要的,逻辑加时间控制是单片机使用的基础。

第三步:中断

单片机的特点是一段程序反复执行,程序中的每个指令的执行都需要一定的执行时间,如果程序没有执行到某指令,则该指令的动作就不会发生,这样就会耽误很多快速发生的事情,例如,按钮按下时的下降沿。要使单片机在程序正常运行过程中,对快速动作做出反应,就必须使用单片机的中断功能,该功能就是在快速动作发生后,单片机中断正常运行的程序,处理快速发生的动作,处理完成后,在返回执行正常的程序。

中断功能使用中的困难是需要精确地知道什么时候不允许中断发生(屏蔽中断)、什么时候允许中断发生(开中断),需要设置哪些寄存器才能使某种中断起作用,中断开始时,程序应该干什么,中断完成后,程序应该干什么等等。中断学会后,就可以编制更复杂结构的程序,这样的程序可以干着一件事,监视着一件事,一旦监视的事情发生,就中断正在干的事情,处理监视的事情,当然也可以监视多个事情,形象的比喻,中断功能使单片机具有吃着碗里的,看着锅里的功能。以上三步学会,就相当于降龙十八掌武功,会了三掌了,可以勉强护身。

第四步:与PC机进行RS232通信

单片机都有USART接口,特别是STM8系列中很多型号,都具有两个USART接口。USART接口不能直接与PC机的RS232接口连接,它们之间的逻辑电平不同,需要使用一个stm8s105c6芯片进行电平转换。USART接口的使用是非常重要的,通过该接口,可以使单片机与PC机之间交换信息,虽然RS232通信并不先进,但是对于接口的学习是非常重要的。正确使用USART接口,需要学习通信协议,PC机的RS232接口编程等等知识。试想,单片机实验板上的数据显示在PC机监视器上,而PC机的键盘信号可以在单片机实验板上得到显示,将是多么有意思的事情啊!

第五步:学会A/D转换

STM8单片机带有多通道12位A/D转换器,通过这些A/D转换器可以使单片机操作模拟量,显示和检测电压、电流等信号。学习时注意模拟地与数字地、参考电压、采样时间,转换速率,转换误差等概念。使用A/D转换功能的简单的例子是设计一个电压表。

第六步:学会PCI、I2C接口和液晶显示器接口

这些接口的使用可以使单片机更容易连接外部设备,在扩展单片机功能方面非常重要。

第七步:学会比较、捕捉、PWM功能

这些功能可以使单片机能够控制电机,检测转速信号,实现电机调速器等控制起功能。如果以上七步都学会,就可以设计一般的应用系统,相当于学会十招降龙十八掌,可以出手攻击了。

第八步:学习USB接口、TCP/IP接口、各种工业总线的硬件与软件设计

学习USB接口、TCP/IP接口、各种工业总线的硬件与软件设计是非常重要的,因为这是当前产品开发的发展方向。

到此为止,相当于学会15招降龙十八掌,但还不到打遍天下无敌手的境界。即使如此,也算是单片机大侠了。

转自: 快易购

围观 382

STM32中,每一个GPIO都可以触发一个外部中断,但是,GPIO的中断是以组位一个单位的,同组间的外部中断同一时间只能使用一个。比如说,PA0,PB0,PC0,PD0,PE0,PF0,PG0这些为1组,如果我们使用PA0作为外部中断源,那么别的就不能够再使用了,在此情况下,我们智能使用类似于PB1,PC2这种末端序号不同的外部中断源。每一组使用一个中断标志EXTIx。EXTI0 – EXTI4这5个外部中断有着自己的单独的中断响应函数,EXTI5-9共用一个中断响应函数,EXTI10-15共用一个中断响应函数。

程序开发

其实上面那些基本概念和知识只是对STM32的中断系统有一个大概的认识,用程序说话将会更能够加深如何使用中断。使用外部中断的基本步骤如下:

1.设置好相应的时钟;
2.设置相应的中断;
3.IO口初始化;
4.把相应的IO口设置为中断线路(要在设置外部中断之前)并初始化;
5.在选择的中断通道的响应函数中中断函数。

根据原理图,K1/K2/K3连接的是PC5/PC2/PC3,因此我将用EXTI5/EXTI2/EXTI3三个外部中断。PB5/PD6/PD3分别连接了三个LED灯。中断的效果是按下按键,相应的LED灯将会被点亮。

1.设置相应的时钟

首先需要打开GPIOB、GPIOC和GPIOE(因为按键另外一端连接的是PE口)。然后由于是要用于触发中断,所以还需要打开GPIO复用的时钟。相应的函数在GPIO的学习笔记中有了详细了解释。详细代码如下:

void RCC_cfg()
{
//打开PE PD PC PB端口时钟,并且打开复用时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOE | RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO, ENABLE);
}

设置相应的时钟所需要的RCC函数在stm32f10x_rcc.c中,所以要在工程中添加此文件。

2.设置好相应的中断

设置相应的中断实际上就是设置NVIC,在STM32的固件库中有一个结构体NVIC_InitTypeDef,里面有相应的标志位设置,然后再用NVIC_Init()函数进行初始化。详细代码如下:

void NVIC_cfg()
{
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //选择中断分组2

NVIC_InitStructure.NVIC_IRQChannel = EXTI2_IRQChannel; //选择中断通道2
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //抢占式中断优先级设置为0
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; //响应式中断优先级设置为0
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能中断
NVIC_Init(&NVIC_InitStructure);

NVIC_InitStructure.NVIC_IRQChannel = EXTI3_IRQChannel; //选择中断通道3
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1; //抢占式中断优先级设置为1
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //响应式中断优先级设置为1
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能中断
NVIC_Init(&NVIC_InitStructure);

NVIC_InitStructure.NVIC_IRQChannel = EXTI9_5_IRQChannel; //选择中断通道5
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2; //抢占式中断优先级设置为2
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2; //响应式中断优先级设置为2
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能中断
NVIC_Init(&NVIC_InitStructure);
}

由于有3个中断,因此根据前文所述,需要有3个bit来指定抢占优先级,所以选择第2组。又由于EXTI5-9共用一个中断响应函数,所以EXTI5选择的中断通道是EXTI9_5_IRQChannel,详细信息可以在头文件中查询得到。用到的NVIC相关的库函数在stm32f10x_nivc.c中,需要将此文件复制并添加到工程中。具体位置可以查看关于GPIO的笔记。这段代码编译起来没有任何问题,但是在链接的时候就会报错,需要把STM32F10xR.LIB加入工程中,具体位置在…KeilARMRV31LIBSTSTM32F10xR.LIB。

3.IO口初始化

void IO_cfg()
{
GPIO_InitTypeDef GPIO_InitStructure;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //选择引脚2
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //输出频率最大50MHz
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //带上拉电阻输出
GPIO_Init(GPIOE,&GPIO_InitStructure);
GPIO_ResetBits(GPIOE,GPIO_Pin_2); //将PE.2引脚设置为低电平输出

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_5; //选择引脚2 3 5
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //选择输入模式为浮空输入
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //输出频率最大50MHz
GPIO_Init(GPIOC,&GPIO_InitStructure); //设置PC.2/PC.3/PC.5

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3 | GPIO_Pin_6; //选择引脚3 6
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //输出频率最大50MHz
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //带上拉电阻输出
GPIO_Init(GPIOD,&GPIO_InitStructure);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //选择引脚5
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //输出频率最大50MHz
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //带上拉电阻输出
GPIO_Init(GPIOB,&GPIO_InitStructure);
}

其中连接外部中断的引脚需要设置为输入状态,而连接LED的引脚需要设置为输出状态,初始化PE.2是为了使得按键的另外一端输出低电平。GPIO中的函数在stm32f10x_gpio.c中。

4.把相应的IO口设置为中断线路

由于GPIO并不是专用的中断引脚,因此在用GPIO来触发外部中断的时候需要设置将GPIO相应的引脚和中断线连接起来,具体代码如下:
void EXTI_cfg()
{
EXTI_InitTypeDef EXTI_InitStructure;
//清空中断标志
EXTI_ClearITPendingBit(EXTI_Line2);
EXTI_ClearITPendingBit(EXTI_Line3);
EXTI_ClearITPendingBit(EXTI_Line5);
//选择中断管脚PC.2 PC.3 PC.5
GPIO_EXTILineConfig(GPIO_PortSourceGPIOC, GPIO_PinSource2);
GPIO_EXTILineConfig(GPIO_PortSourceGPIOC, GPIO_PinSource3);
GPIO_EXTILineConfig(GPIO_PortSourceGPIOC, GPIO_PinSource5);
EXTI_InitStructure.EXTI_Line = EXTI_Line2 | EXTI_Line3 | EXTI_Line5; //选择中断线路2 3 5
EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; //设置为中断请求,非事件请求
EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling; //设置中断触发方式为上下降沿触发
EXTI_InitStructure.EXTI_LineCmd = ENABLE; //外部中断使能
EXTI_Init(&EXTI_InitStructure);
}

EXTI_cfg中需要调用到的函数都在stm32f10x_exti.c。

5.写中断响应函数

STM32不像C51单片机那样,可以用过interrupt关键字来定义中断响应函数,STM32的中断响应函数接口存在中断向量表中,是由启动代码给出的。默认的中断响应函数在stm32f10x_it.c中。因此我们需要把这个文件加入到工程中来。

在这个文件中,我们发现,很多函数都是只有一个函数名,并没有函数体。我们找到EXTI2_IRQHandler()这个函数,这就是EXTI2中断响应的函数。我的目标是将LED灯点亮,所以函数体其实很简单:

void EXTI2_IRQHandler(void)
{
//点亮LED灯
GPIO_SetBits(GPIOD,GPIO_Pin_6);
//清空中断标志位,防止持续进入中断
EXTI_ClearITPendingBit(EXTI_Line2);
}
void EXTI3_IRQHandler(void)
{
GPIO_SetBits(GPIOD,GPIO_Pin_3);
EXTI_ClearITPendingBit(EXTI_Line3);
}
void EXTI9_5_IRQHandler(void)
{
GPIO_SetBits(GPIOB,GPIO_Pin_5);
EXTI_ClearITPendingBit(EXTI_Line5);
}

由于EXTI5-9是共用一个中断响应函数,因此所有的EXTI5 – EXTI9的响应函数都写在这个里面。

6.写主函数

#include "stm32f10x_lib.h"
void RCC_cfg();
void IO_cfg();
void EXTI_cfg();
void NVIC_cfg();
int main()
{
RCC_cfg();
IO_cfg();
NVIC_cfg();
EXTI_cfg();
while(1);
}

main函数前是函数声明,main函数函数体中都是调用初始化配置函数,然后进入死循环,等待中断响应。

以上就是STM32外部中断的介绍,功能可以不用管,知道该配置哪些东西就够了。ok,基础知识学习完了吧!那么就可以买个具体模块来试试了。这里用的是四路数字触摸感应传感器模块。

下面是该模块的简要描述:

一、模块描述

该传感器模块是四路触摸感应模块,基于TTP224芯片。通过触摸数字(1、2、3、4),可以起到控制外围硬件电路的作用。手按数字开关,对应的灯(D1、D2、D3、D4)会亮,对应的四个输出口(OUT1、OUT2、OUT3、OUT4)中的一个会输出高电平。

模块参数:
1、板载TTP224电容式4键触摸感应IC
2、板载4路电平状态指示灯
3、工作电压:2.4V-5.5V
4、模块可以设置输出模式、键输出模式、最长输出时间和快速/低功耗选择
5、PCB板子尺寸:35(mm)x29(mm)

二、硬件调试

(1) 硬件实物图展示如下图:

利用STM32外部中断驱动四路数字触摸感应传感器模块

(2) 模块原理图接口展示如图:
利用STM32外部中断驱动四路数字触摸感应传感器模块

(3) 管脚实际连接表
利用STM32外部中断驱动四路数字触摸感应传感器模块

三、软件调试

本工程实现的功能是通过触摸传感器模块中的数字触发引脚的外部中断,从而控制核心板上LED灯闪烁以及K11开发板上的继电器。本案例基于光轮电子公司TreeOS软件开发架构运行,具体软件工程还请关注光轮电子公司TreeOS驱动库文件。

以下是工程图:

利用STM32外部中断驱动四路数字触摸感应传感器模块

来源: eeworld.com

围观 432

UART(Universal Asynchronous Receiver and Transmitter)通用异步收发器(异步串行通信口)是MCU的一个重要的数字接口,市面上很多的传感器、通信模块等外围器件都采用了UART接口,同时工程师在软件开发调试过程中UART打印输出作为一种最直观的输出方式可以检查程序的运行情况,所以UART在MCU中的作用不言而喻。

首先普及一下并行通信、串行通信(同步通信和异步通信)两种通信方式的特点:
并行通信:并行通信是指数据的各个位同时传送,可以字或字节为单位并行进行。
-传输原理:数据各个位同时传输。
-优点:速度快,位数多
-缺点:占用引脚资源多,线路复杂,成本高

串行通信:串行通信是指使用一条数据线,将数据一位一位地依次传输,每一位数据占据一个固定的时间长度,其只需要少数几条线就可以在系统间交换信息。
-传输原理:数据按位顺序传输。
-优点:占用引脚资源少,传输线少
-缺点:速度相对较慢,耗时长

串行通信的通信方式又分为:同步通信和异步通信两种方式
同步通信:带时钟同步信号传输,发送方和接收方时钟需要建立连接,使双方的时钟
到完全同步。比如:SPI,IIC通信接口等。
异步通信:接收器和发送器使用各自的时钟,不带时钟同步信号。每一个字符要用起始位和停止位作为字符开始和结束的标志,以字符为单位的一个个地发送和接收。比如:UART通信接口等。

MM32系列MCU的通用异步收发器(UART)提供了一种灵活的方法与使用工业标准 NRZ 异步串行数据格式的外部设备之间进行全双工数据交换。UART 利用分数波特率发生器提供宽范围的波特率选择。它支持同步单向通信和半双工单线通信,以及调制解调器(CTS/RTS)操作。

有很多工程师在使用UART时,在设计PCB的UART接口时,一直对UART采用两线、三线、四线的问题一直都是很模糊情况,在这里我简单讲一下这个问题。

有些客户采用两线主要是单工模式,两线分别是:GND, TX 或者 RX,相当于MCU是做发送或者接收功能,将接收设备和发送设备共地,是要把参考电压调节成一致,避免接收设备和发送设备双方对高低电平的判断不一致的情况。

采用两线主要是双工模式,三线分别是:GND,TX,RX,接收设备和发送设备都是双向通信设备,且都有各自的供电电源,只需要将双方的基准电压调节一致就可以实现双方的串口通信功能,客户在使用ISP下载程序时一般都采用这种方式,预留一个三线接口。

采用四线主要是通信双方有一方需要为另一方提供电源,供另一方芯片运行,所以四线分别为:GND,TX,RX,VDD。
GND:共地,提供基准电压。
RX:接收数据串行输入。通过过采样技术来区别数据和噪音,从而恢复数据。
TX:发送数据串行输出。当发送器被禁止时,输出引脚恢复到它的I/O端口配置。当发送器被激活,并且不发送数据时,TX引脚处于高电平。在单线和智能卡模式里,此I/O口被同时用于数据的发送和接收。
VDD:供电源。

一般的通信模块还会有另外两个引脚在硬件流控模式中需要使用:
nCTS:清除发送,若是高电平,在当前数据传输结束时阻断下一次的数据发送。
nRTS:发送请求,若是低电平,表明 UART 准备好接收数据。

两个UART间的通信接线方法

MM32 UART中断通信

两个UART间的硬件流控
MM32 UART中断通信

UART特征:

字长可以通过编程 UART_CCR 寄存器中的 CHAR 位,选择 5 ~ 8 位。在起始位期间, TX 脚处于低电平,在停止位期间处于高电平。

空闲符号被视为完全由‘1’组成的一个完整的数据帧,后面跟着包含了数据的下一帧的开始位(‘1’的位数也包括了停止位的位数)。

断开符号被视为在一个帧周期内全部收到‘0’(包括停止位期间,也是‘0’)。在断开帧结束时,发送器再插入 1 或 2 个停止位(‘1’)来应答起始位。

发送和接收由一个共用的波特率发生器驱动,当发送器和接收器的使能位分别置位时,分别为其产生时钟。

UART时序

MM32 UART中断通信

串口设置的步骤可分为如下几个流程:

1) 串口复位,GPIO复位
2) 串口时钟使能, GPIO 时钟使能
3) GPIO 端口模式设置
4) 串口参数初始化
5) 开启中断并且初始化 NVIC(如果需要开启中断才需要这个步骤)
6) 编写中断处理函数

1、串口复位,GPIO复位

在系统开始配置外设时,建议先执行复位相对应的外设,然后重新配置该外设,使其达到自己所期望的工作模式。

UART_DeInit(UART1);//复位串口1
GPIO_DeInit(GPIOA);//复位GPIOA

2、串口时钟使能, GPIO 时钟使能

串口1(UART1)是挂载在 APB2 下面的外设,GPIOA的时钟是挂载在AHB上,所以使能函数为:

RCC_APB2PeriphClockCmd(RCC_APB2Periph_UART1, ENABLE);//使能UART1
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE);//使能GPIOA的时钟

3、GPIO 端口模式设置

在上一章节讲述了GPIO的使用,使用GPIO的UART功能需要配置端口复用功能,根据DS_MM32L073_Ver1.7手册表4.PA端口功能复用可知PA9和PA10的UART功能的复用配置AF1。
GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_1);
GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_1);
外设的GPIO配置:

MM32 UART中断通信

接下来的两段代码就是将 TX(PA9)设置为推挽复用输出模式,将 RX(PA10)设置为浮空输入模式:
GPIO_InitTypeDef GPIO_InitStructure;
//UART1_TX GPIOA.9
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //PA.9
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出
GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化 GPIOA.9

//UART1_RX GPIOA.10
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;//PA10
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;//浮空输入GPIO_Init(GPIOA, &GPIO_InitStructure);// 初始化 GPIOA.10

4、串口参数初始化

4.1、分数波特率发生器

接收器和发送器的波特率在 BRR 的整数寄存器和 FRA 的小数寄存器中的值应设置成相同。
Tx/Rx 波特率 = fCK /(16 *UARTDIV )

这里的 fCK 是给外设的时钟(PCLK1 用于 UART2, PCLK2 用于 UART1)。UARTDIV 是一个无符号的定点数。这 16 位的值设置在 UART_BRR 寄存器。

例:如果BaudRate=9600,PCLK2=72MHz
则UARTDIV= 468.75

4.2、字长配置

字长可以通过编程 UART_CCR 寄存器中的 CHAR 位,选择 5 ~ 8 位。

4.3、奇偶校验位

奇偶控制(发送时生成一个奇偶位,接收时进行奇偶校验)可以通过设置 UART_CCR 寄存器上的 PEN位而激活。如果奇偶校验出错,无效数据不会从移位寄存器传送到 UART_RDR 寄存器。

偶校验:校验位使得一帧中的数据以及校验位中‘1’的个数为偶数。

例如:数据 = 00110101,有 4 个‘1’,如果选择偶校验(在 UART_CCR 中的 PSEL = 0),校验位将是‘0’。

奇校验:此校验位使得一帧中的数据以及校验位中‘1’的个数为奇数。

例如:数据=00110101,有 4 个‘1’,如果选择奇校验(在 UART_CCR 中的 PSEL = 1),校验位将是‘1’。

传输模式:如果 UART_CCR 的 PEN 位被置位,写进数据寄存器的数据的 MSB 位被校验位替换后发送出去(如果选择偶校验偶数个‘1’,如果选择奇校验奇数个‘1’)。如果奇偶校验失败, UART_ISR 寄存器中的 RXPERR_INTF 标志被置‘1’,并且如果 RXPERREN 在被预先设置的话,中断产生。

4.4、硬件数据流流控

RTS 流控制

如果 RTS 流控制被使能,只要 UART 接收器准备好接收新的数据, nRTS 就变成有效(接低电平)。当接收寄存器内有数据到达时, nRTS 被释放,由此表明希望在当前帧结束时停止数据传输。下图是一个启用 RTS 流控制的通信的例子。

MM32 UART中断通信

CTS 流控制

如果 CTS 流控制被使能,发送器在发送下一帧前检查 nCTS 输入。如果 nCTS 有效(被拉成低电平),则下一个数据被发送(假设那个数据是准备发送的),否则下一帧数据不被发出去。若 nCTS 在传输期间被变成无效,当前的传输完成后停止发送。下图是一个 CTS 流控制被启用的通信的例子。

MM32 UART中断通信

UART_InitTypeDef UART_InitStructure;
UART_InitStructure.UART_BaudRate = 115200;//波特率设置
UART_InitStructure.UART_WordLength= UART_WordLength_8b;//字长为8
UART_InitStructure.UART_StopBits = UART_StopBits_1;//一个停止位
UART_InitStructure.UART_Parity = UART_Parity_No;//无奇偶校验位
UART_InitStructure.UART_HardwareFlowControl=UART_HardwareFlowControl_None;//无硬件数据流流控
UART_InitStructure.UART_Mode = UART_Mode_Rx | UART_Mode_Tx;//开启收发模式
UART_Init(UART1, &UART_InitStructure); //初始化串口
UART_Cmd(UART1, ENABLE); //UART1使能

4.5、开启中断并且初始化 NVIC(如果需要开启中断才需要这个步骤)

NVIC_InitTypeDef NVIC_InitStructure;
UART_ITConfig(UART1, UART_IT_RXIEN, ENABLE);//开启串口接收中断
NVIC_InitStructure.NVIC_IRQChannel = UART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPriority = 3;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);

4.6、编写中断处理函数

void UART1_IRQHandler(void) //中断服务函数
{
u8 Res;
if(UART_GetITStatus(UART1, UART_IT_RXIEN) != RESET) //接收中断产生
{
UART_ClearITPendingBit(UART1,UART_IT_RXIEN);//清中断标志
Res =UART_ReceiveData(UART1);
UART_SendData (Res);
}
}

按照上述配置完成后,在main函数中将上述函数调用,将程序下载到MiniBorad中,打开串口助手,在对话框中输入您需要输入的内容,MCU的UART将您发送的数据转发并且打印在串口助手对话框,可以在显示串口看到您输入的内容。打印结果如下图所示:

MM32 UART中断通信

转自: 灵动微电子

围观 672

中断系统的使用极大的提高了CPU的利用率。

中断是一种机制,这种机制实现的过程可分为请求-->响应-->服务-->返回。

可编程中断控制器8259A是Intel公司专为80x86 CPU控制外部中断而设计开发的芯片。其内部结构及引脚图如下:

可编程中断控制器8259A详解

中断申请的过程可大概描述为:中断源发生-----》(此中断未被屏蔽)中断优先级判定(高于正在服务的中断则打断)------》向cpu发送中断请求-----》cpu回复一个inta告诉中断申请成功------》中断服务寄存器相应的位置位,表示这个中断正在被执行---------》当收到cpu的第二个inta的时候,中断逻辑单元把中断号发给cpu,cpu调用相应的中断程序执行------》发送中断号时,将ISR的相应位复位(利用完了就复位,主要是把中断号拿出来。如果不复位,则每次逻辑电路放在总线上的中断号就会出错),表示执行完毕。
其内部涉及的关键型寄存器有:中断请求寄存器,中断屏蔽寄存器,中断优先级判别寄存器,中断服务寄存器。

对于8259A的各个模块的“官方”描述如下:

(1)数据总线缓冲器

数据总线缓冲器为三态、双向、8位寄存器,数据线D7~D0与CPU系统总线连接,构成CPU与8259A之间信息传送的通道。

(2)读/写控制逻辑

读/写控制逻辑用来接收CPU系统总线的读/写控制信号和端口地址选择信号,用于控制8259A内部寄存器的读/写操作。

(3)级联缓冲/比较器

8259A既可以工作于单片方式,也可以工作于多片级联方式,级联方式硬件连接如图6.10所示。级联缓冲/比较器提供多片8259A的管理和选择功能,其中一片为主片,其余为从片。

(4)中断控制逻辑

中断控制逻辑按照编程设定的工作方式管理中断,负责向片内各部件发送控制信号,向CPU发送中断请求信号INT和接收CPU回送的中断响应信号,控制8259A进入中断管理状态。

(5)中断请求寄存器(interrupt request register,IRR)

IRR是一个8位寄存器,用于记录外部中断请求。其中D7~D0分别与外部中断请求信号IR7~IR0相对应,当IRi(i=0~7)有请求(电平或边沿触发)时,IRR中的相应位Di置1,在中断响应信号有效时,Di被清除。

(6)中断服务寄存器(interrupt service register,ISR)

ISR是一个8位寄存器,用于记录CPU当前正在服务的中断标志。当外部中断IRi(i=0~7)的请求得到CPU响应进入服务时,由CPU发来的第一个中断响应脉冲将ISR中的相应位Di(i=0~7)置1,而ISR的复位则由8259A中断结束方式决定。若定义为自动结束方式,则由CPU发来的第二个中断响应脉冲的后沿将Di复位为0;若定义为非自动结束方式,则由CPU发送来的中断结束命令将其复位。

(7)中断屏蔽寄存器(interrupt mask register,IMR)

IMR是一个8位寄存器,用来存放IR7~IR0的中断屏蔽标志。它的8个屏蔽位D7~D0与外部中断请求IR7~IR0相对应,用于控制IRi的请求是否允许进入。当IMR中的Di位为1时,对应的IRi请求被禁止;当IMR中的Di位为0时,则允许对应的中断请求进入。它可以由软件设置或清除,通过编程设定屏蔽字,可以改变原来的优先级别。

(8)优先权判决器(priority register,PR)

优先权判决器对IRR中记录的内容与当前ISR中记录的内容进行比较,并对它们进行排队判优,以便选出当前优先级最高级的中断请求。如果IRR中记录的中断请求的优先级高于ISR中记录的中断请求的优先级,则由中断控制逻辑向CPU发出中断请求信号INT,中止当前的中断服务,进行中断嵌套。如果IRR中记录的中断请求的优先级低于ISR中记录的中断请求的优先级,则CPU继续执行当前的中断服务程序。

转自: 玩转单片机

围观 644



中断

单片机CPU在处理某一事件A时,发生了另一事件B请求CPU迅速去处理(中断发生);CPU暂时中断当前的工作,转去处理事件B(中断响应和中断服务);待CPU将事件B处理完毕后,再回到原来事件A被中断的地方继续处理事件A(中断返回),这一过程称为中断。

例如,当你正在洗衣时,突然手机响了(中断发生),你暂时中断洗衣的工作,转去接电话(中断响应和中断服务),待你接完后,再回来继续洗衣(中断返回),这一过程就是中断。

单片机中断分为内部中断和外部中断两大类,外部中断由单片机外部设备产生,中断产生后通过单片机的外部管脚传递给单片机,传递这个中断信号最简单的方法就是 规定单片机的管脚在什么状态下有外部中断产生,这样单片机通常是有一个或多个IO口,当在输入状态时可以用来检测外部中断信号。

有外部中断产生的条件通常也 就是这五种:IO口输入为高、IO口输入为低、IO口输入由高变为低、IO口输入由低变为高、IO口输入由高变低或者由低变高。

一个连接到 单片机的外部设备,如果想要使用单片机的外部中断,就必须在自己请求单片机中断响应的时候给单片机提供单片机在这五种信号中所支持的类型来触发单片机中 断。程序运转中,一个中断不是只产生一次,一般都会间隔持续产生,这五种外部中断触发信号前四种都有一个问题,就是外设发出请求中断信号后如果信号请求线 状态不改变,外设会无法向单片机提供下一次中断请求信号。让我们来看看以单片机和外部设备采用负跳变触发中断为例的触发情况。

外部设备以负跳变触发单片机中断,第一次中断请求外部设备的中断请求输出脚可以从高变低,触发单片机中断,第一次中断请求发生后中断请求脚保持输出低,外部设备无法产生第二次中断的触发负跳变信号。

外设只能产生一次中断请求信号示意图

图1 外设只能产生一次中断请求信号示意图

将外部设备的中断请求信号做出修改,原来为需要中断时只是输出从高到低变化,现在改为输出先从高变到低,经过一小段时间后自己从低变回高,这样就可以每次需要中断时都能向单片机输出负跳变触发信号。

外设可连续产生中断请求信号示意图一

图2 外设可连续产生中断请求信号示意图一

或者是由外部设备提供某种接口,单片机通过该接口可以对外部设备进行中断清除操作,中断清除操作可以让外部设备的中断请求输出脚恢复到高。

外设可连续产生中断请求信号示意图二

图3 外设可连续产生中断请求信号示意图二

外部中断触发还有一些特殊方式,比如外部脉冲宽度测量、外部脉冲计数等,这些方式都是在前面几种基本触发方式上进行功能扩展得来的,外部脉冲宽度测量就是当 中断信号线跳变时会启动内部一个计时器,到下一次中断信号线跳变时通过计时器得到脉冲宽度并重新启动计时器,这些方式很少会使用到,不做详述。

内部中断是指单片机内部的功能模块产生中断信号,只要是单片机内部在CPU外围能独立工作的功能模块都会提供中断功能,常见的内部中断类型有时钟 Timer、串口UART、模数转换ADC等。内部中断的工作流程和外部中断没太多区别,只是中断请求信号是在单片机内部进行传输,中断信号不是管脚上的 电平状态,而是一个寄存器里面的相应标志位,通常当某个内部中断产生中断请求时就会将相应标志位置为1,CPU响应中断时将这个标志位清0。

内部中断触发示意图

图4 内部中断触发示意图

单片机对中断标志位的处理方法没有统一标准,具体的约定方法要看单片机文档。大部分是标志位为1有中断产生,但有少数单片机是标志位为0有中断产生;有的单片机对中断标志位是CPU写入什么就给改写成什么,有的则是规定必须通过写1或写0来实现清除操作,还有少数只要读一下中断标志位就会自动清除掉该标志位。

如果单片机不想被外部中断触发,大不了将用于连接外部中断触发信号的管脚接成不会触发中断的电压状态就可以,但内部中断无法去改变内部 连线,所以单片机为了可以选择中断是否可以被除法,在其内部会有相关的寄存器来进行选择,通过里面的控制标志位,开发人员可以根据实际情况决定是否使用中 断。通常单片机里面有一个总控制位,这个位可以控制所有中断的开与关,然后每一种中断自己还有一个独立的控制位决定自己的开与关,如果想使用某个中断,就 需要将总中断开关和对应中断的开关都打开。

当单片机有中断信号产生时,就会触发对应中断,不同的中断源会需要不同的响应方法,也就是说不同 的中断产生的时候,需要单片机程序依照不同的中断源做出不同的响应,这就是中断服务程序。如果是UART收到新数据产生中断,应该是UART中断服务程序 将数据读回来并做处理,如果是ADC转换完成产生的中断,需要的则是ADC中断服务程序将数据读回来并做处理。如果需要清中断标志位动作,一般都是在中断 服务程序里面完成。

不同的中断源需要与之对应的中断服务程序,实际开发中并不是所有的中断都会被用到,开发人员为了节约程序代码空间会只写 出自己要使用到的中断服务程序,也就是说会有一些中断没有与之对应的中断服务程序,如果触发了这样的中断,单片机程序会运行出错,前面中断各自独立的控制 位就排上用场,将这些控制位关掉,相应中断就不会被触发。

单片机开始上电的时候,如果控制中断是否被打开的寄存器控制标志位被打开,可能会出现中断被误触发的情况,而这个中断如果没有与之相对应的中断服务程序的话程序就会跑飞,所以单片机上电的时候一般会自动将这些寄存器里面的标志位都关掉,以免误触发。

中断服务程序是单片机程序的一部分,具体内容由开发人员决定,这样中断服务程序的大小在单片机程序中的位置就不固定,当单片机的中断被触发后,单片机需要知道中断服务程序在什么位置才能执行它,单片机通过中断跳转表(中断向量表)来解决这个问题。

虽然中断服务程序的大小和在整个程序中的位置会不固定,但程序只要被烧进单片机系统,对于这个程序来说其中断服务程序的大小和在整个程序中的位置就会被固定 下来,如果对单片机程序空间分配我们做出一些约定,将一个绝对固定地址专门分配给中断使用,程序编译时会将中断服务程序的起始地址(或者是跳转到中断服务 程序的指令)填到这个绝对固定地址所在的空间,当中断产生时候,单片机先将绝对固定地址所在位置里面的内容读出,根据所读内容就可以跳转到中断服务程序。

中断响应示意图

图5 中断响应示意图

简单的单片机所提供的中断种类有限,为了简化程序,会给每一个中断分配一个用来存放中断服务程序地址的地址空间,这种方法其实没什么不好的地方,只是单片机 技术发展到现在遇到了瓶颈,高端单片机越来越复杂,于是一些专业厂商开始合作共享技术资源,例如ARM公司利用他们在CPU架构体系上的技术优势专门给另 外的厂商提供CPU内核,另外的厂商在ARM内核的CPU外围增加功能模块,这些功能模块大都支持中断。

ARM内核单片机架构图

图6 ARM内核单片机架构图

不同厂家在相同CPU内核基础上设计出来的单片机外围的功能模块会各不相同,从而中断的种类和个数也各不相同,而CPU处理中断的方法是一样的,如果延续简单的单片机给每个中断都分配一个地址空间的做法显然有问题,CPU无法知道到底有多少种中断需要支持,这些中断又分别对应什么模块,于是采用另外一种中断处理方法,将所有中断地址都指向同一个,并将所有中断依次编号,中断产生时候CPU会告诉中断服务程序当前中断编号是多少,然后中断服务程序根据中断编号 做出相应响应。

公用中断入口中断响应流程图

图7 公用中断入口中断响应流程图

独立中断入口中断响应流程图

图8 独立中断入口中断响应流程图

所有中断使用同一个中断向量地址,然后通过中断号判断中断类别的方法虽然解决了通用CPU内核中断不能直接对应中断向量地址的问题,但把它中断处理的流程和具有独立中断向量表的单片机相比就会发现:中断的响应速度会变慢。具有独立中断向量表的单片机只要一条跳转指令就可以直接进入中断程序,而没有独立中断向量表的单片机需要先跳转到中断公共入口,然后通过代码判定中断类别,确定中断类别后才跳转到真正的中断程序中去。C语言的代码会让这种情况更加恶化,所以如果是没有独立中断向量表的单片机一般采用汇编查表的方法加快中断响应速度。

汇编中断快速跳转表

图9 汇编中断快速跳转表

中断程序执行完毕后回返回继续执行主程序,这样就要求中断不改变主程序的运行状态,所以中断响应时需要将程序当前运行的状态信息保存起来,比如程序运行到什 么位置、当前CPU状态寄存器的状态等信息。当中断程序执行完毕,可以通过这些信息将CPU状态寄存器恢复原来状态,并能返回原程序继续执行。不同的单片机对此的处理方式也会有不同,一种是完全由硬件来完成,并不需要程序来进行管理;另外一种是将状态信息用相应指令保存在特定位置,返回时再用相应指令恢复原来状态。

单片机中断还有中断优先级和中断嵌套的概念,但不是所有的单片机都会支持这两种功能。中断优先级是不同的中断会有不同的优先级别,如果同时有两个中断产生,单片机会先响应优先级高的中断。中断嵌套是指在中断响应当中又有新的中断产生,单片机可以暂停当前的中断程序执行去响应新的中断,新中断程序执行完以后在接着执行当前中断程序。一般中断嵌套是高优先级的中断可以插入低优先级中断响应程序,同级或低级的中断不能插入当前中断响应程序。

中断嵌套示意图

图10 中断嵌套示意图

中断步骤说明:
步骤①保存主程序现场,执行中断1服务程序。
步骤②保存中断1服务程序现场,执行中断2服务程序。
步骤③恢复中断1服务程序现场,继续执行中断1服务程序。
步骤④恢复主程序现场,准备继续执行主程序,有新中断不能继续执行主程序。
步骤⑤保存主程序现场,执行中断3服务程序。
步骤⑥恢复主程序现场,准备继续执行主程序,有新中断不能继续执行主程序。
步骤⑦保存主程序现场,执行中断4服务程序。
步骤⑧恢复主程序现场,无中断产生继续执行主程序。

有的单片机一进入中断函数就会自动将中断的总控制位关掉,需要开发人员在中断程序中用程序再次打开,否则一次中断后所有的中断就不能继续使用。对于中断标志位,在写单片机程序的时候要依据单片机文档进行清除标志为操作,不然有可能会一旦产生某个中断就会连续不停的反复响应这个中断,导致主程序不能继续运行。

本文转自: 嵌入式资讯精选

围观 539

中断

单片机CPU在处理某一事件A时,发生了另一事件B请求CPU迅速去处理(中断发生);CPU暂时中断当前的工作,转去处理事件B(中断响应和中断服务);待CPU将事件B处理完毕后,再回到原来事件A被中断的地方继续处理事件A(中断返回),这一过程称为中断。

例如,当你正在洗衣时,突然手机响了(中断发生),你暂时中断洗衣的工作,转去接电话(中断响应和中断服务),待你接完后,再回来继续洗衣(中断返回),这一过程就是中断。

单片机中断分为内部中断和外部中断两大类,外部中断由单片机外部设备产生,中断产生后通过单片机的外部管脚传递给单片机,传递这个中断信号最简单的方法就是 规定单片机的管脚在什么状态下有外部中断产生,这样单片机通常是有一个或多个IO口,当在输入状态时可以用来检测外部中断信号。

有外部中断产生的条件通常也 就是这五种:IO口输入为高、IO口输入为低、IO口输入由高变为低、IO口输入由低变为高、IO口输入由高变低或者由低变高。

一个连接到 单片机的外部设备,如果想要使用单片机的外部中断,就必须在自己请求单片机中断响应的时候给单片机提供单片机在这五种信号中所支持的类型来触发单片机中 断。程序运转中,一个中断不是只产生一次,一般都会间隔持续产生,这五种外部中断触发信号前四种都有一个问题,就是外设发出请求中断信号后如果信号请求线 状态不改变,外设会无法向单片机提供下一次中断请求信号。让我们来看看以单片机和外部设备采用负跳变触发中断为例的触发情况。

外部设备以负跳变触发单片机中断,第一次中断请求外部设备的中断请求输出脚可以从高变低,触发单片机中断,第一次中断请求发生后中断请求脚保持输出低,外部设备无法产生第二次中断的触发负跳变信号。

图1 外设只能产生一次中断请求信号示意图

将外部设备的中断请求信号做出修改,原来为需要中断时只是输出从高到低变化,现在改为输出先从高变到低,经过一小段时间后自己从低变回高,这样就可以每次需要中断时都能向单片机输出负跳变触发信号。

图2 外设可连续产生中断请求信号示意图一

或者是由外部设备提供某种接口,单片机通过该接口可以对外部设备进行中断清除操作,中断清除操作可以让外部设备的中断请求输出脚恢复到高。

图3 外设可连续产生中断请求信号示意图二

外部中断触发还有一些特殊方式,比如外部脉冲宽度测量、外部脉冲计数等,这些方式都是在前面几种基本触发方式上进行功能扩展得来的,外部脉冲宽度测量就是当 中断信号线跳变时会启动内部一个计时器,到下一次中断信号线跳变时通过计时器得到脉冲宽度并重新启动计时器,这些方式很少会使用到,不做详述。

内部中断是指单片机内部的功能模块产生中断信号,只要是单片机内部在CPU外围能独立工作的功能模块都会提供中断功能,常见的内部中断类型有时钟 Timer、串口UART、模数转换ADC等。内部中断的工作流程和外部中断没太多区别,只是中断请求信号是在单片机内部进行传输,中断信号不是管脚上的 电平状态,而是一个寄存器里面的相应标志位,通常当某个内部中断产生中断请求时就会将相应标志位置为1,CPU响应中断时将这个标志位清0。

图4 内部中断触发示意图

单片机对中断标志位的处理方法没有统一标准,具体的约定方法要看单片机文档。大部分是标志位为1有中断产生,但有少数单片机是标志位为0有中断产生;有的单片机对中断标志位是CPU写入什么就给改写成什么,有的则是规定必须通过写1或写0来实现清除操作,还有少数只要读一下中断标志位就会自动清除掉该标志位。

如果单片机不想被外部中断触发,大不了将用于连接外部中断触发信号的管脚接成不会触发中断的电压状态就可以,但内部中断无法去改变内部 连线,所以单片机为了可以选择中断是否可以被除法,在其内部会有相关的寄存器来进行选择,通过里面的控制标志位,开发人员可以根据实际情况决定是否使用中 断。通常单片机里面有一个总控制位,这个位可以控制所有中断的开与关,然后每一种中断自己还有一个独立的控制位决定自己的开与关,如果想使用某个中断,就 需要将总中断开关和对应中断的开关都打开。

当单片机有中断信号产生时,就会触发对应中断,不同的中断源会需要不同的响应方法,也就是说不同 的中断产生的时候,需要单片机程序依照不同的中断源做出不同的响应,这就是中断服务程序。如果是UART收到新数据产生中断,应该是UART中断服务程序 将数据读回来并做处理,如果是ADC转换完成产生的中断,需要的则是ADC中断服务程序将数据读回来并做处理。如果需要清中断标志位动作,一般都是在中断 服务程序里面完成。

不同的中断源需要与之对应的中断服务程序,实际开发中并不是所有的中断都会被用到,开发人员为了节约程序代码空间会只写 出自己要使用到的中断服务程序,也就是说会有一些中断没有与之对应的中断服务程序,如果触发了这样的中断,单片机程序会运行出错,前面中断各自独立的控制 位就排上用场,将这些控制位关掉,相应中断就不会被触发。

单片机开始上电的时候,如果控制中断是否被打开的寄存器控制标志位被打开,可能会出现中断被误触发的情况,而这个中断如果没有与之相对应的中断服务程序的话程序就会跑飞,所以单片机上电的时候一般会自动将这些寄存器里面的标志位都关掉,以免误触发。

中断服务程序是单片机程序的一部分,具体内容由开发人员决定,这样中断服务程序的大小在单片机程序中的位置就不固定,当单片机的中断被触发后,单片机需要知道中断服务程序在什么位置才能执行它,单片机通过中断跳转表(中断向量表)来解决这个问题。

虽然中断服务程序的大小和在整个程序中的位置会不固定,但程序只要被烧进单片机系统,对于这个程序来说其中断服务程序的大小和在整个程序中的位置就会被固定 下来,如果对单片机程序空间分配我们做出一些约定,将一个绝对固定地址专门分配给中断使用,程序编译时会将中断服务程序的起始地址(或者是跳转到中断服务 程序的指令)填到这个绝对固定地址所在的空间,当中断产生时候,单片机先将绝对固定地址所在位置里面的内容读出,根据所读内容就可以跳转到中断服务程序。

图5 中断响应示意图

简单的单片机所提供的中断种类有限,为了简化程序,会给每一个中断分配一个用来存放中断服务程序地址的地址空间,这种方法其实没什么不好的地方,只是单片机 技术发展到现在遇到了瓶颈,高端单片机越来越复杂,于是一些专业厂商开始合作共享技术资源,例如ARM公司利用他们在CPU架构体系上的技术优势专门给另 外的厂商提供CPU内核,另外的厂商在ARM内核的CPU外围增加功能模块,这些功能模块大都支持中断。

图6 ARM内核单片机架构图

不同厂家在相同CPU内核基础上设计出来的单片机外围的功能模块会各不相同,从而中断的种类和个数也各不相同,而CPU处理中断的方法是一样的,如果延续简单的单片机给每个中断都分配一个地址空间的做法显然有问题,CPU无法知道到底有多少种中断需要支持,这些中断又分别对应什么模块,于是采用另外一种中断处理方法,将所有中断地址都指向同一个,并将所有中断依次编号,中断产生时候CPU会告诉中断服务程序当前中断编号是多少,然后中断服务程序根据中断编号 做出相应响应。

图7 公用中断入口中断响应流程图

图8 独立中断入口中断响应流程图

所有中断使用同一个中断向量地址,然后通过中断号判断中断类别的方法虽然解决了通用CPU内核中断不能直接对应中断向量地址的问题,但把它中断处理的流程和具有独立中断向量表的单片机相比就会发现:中断的响应速度会变慢。具有独立中断向量表的单片机只要一条跳转指令就可以直接进入中断程序,而没有独立中断向量表的单片机需要先跳转到中断公共入口,然后通过代码判定中断类别,确定中断类别后才跳转到真正的中断程序中去。C语言的代码会让这种情况更加恶化,所以如果是没有独立中断向量表的单片机一般采用汇编查表的方法加快中断响应速度。

图9 汇编中断快速跳转表

中断程序执行完毕后回返回继续执行主程序,这样就要求中断不改变主程序的运行状态,所以中断响应时需要将程序当前运行的状态信息保存起来,比如程序运行到什 么位置、当前CPU状态寄存器的状态等信息。当中断程序执行完毕,可以通过这些信息将CPU状态寄存器恢复原来状态,并能返回原程序继续执行。不同的单片机对此的处理方式也会有不同,一种是完全由硬件来完成,并不需要程序来进行管理;另外一种是将状态信息用相应指令保存在特定位置,返回时再用相应指令恢复原来状态。

单片机中断还有中断优先级和中断嵌套的概念,但不是所有的单片机都会支持这两种功能。中断优先级是不同的中断会有不同的优先级别,如果同时有两个中断产生,单片机会先响应优先级高的中断。中断嵌套是指在中断响应当中又有新的中断产生,单片机可以暂停当前的中断程序执行去响应新的中断,新中断程序执行完以后在接着执行当前中断程序。一般中断嵌套是高优先级的中断可以插入低优先级中断响应程序,同级或低级的中断不能插入当前中断响应程序。

图10 中断嵌套示意图

中断步骤说明:

步骤①保存主程序现场,执行中断1服务程序。

步骤②保存中断1服务程序现场,执行中断2服务程序。

步骤③恢复中断1服务程序现场,继续执行中断1服务程序。

步骤④恢复主程序现场,准备继续执行主程序,有新中断不能继续执行主程序。

步骤⑤保存主程序现场,执行中断3服务程序。

步骤⑥恢复主程序现场,准备继续执行主程序,有新中断不能继续执行主程序。

步骤⑦保存主程序现场,执行中断4服务程序。

步骤⑧恢复主程序现场,无中断产生继续执行主程序。

有的单片机一进入中断函数就会自动将中断的总控制位关掉,需要开发人员在中断程序中用程序再次打开,否则一次中断后所有的中断就不能继续使用。对于中断标志位,在写单片机程序的时候要依据单片机文档进行清除标志为操作,不然有可能会一旦产生某个中断就会连续不停的反复响应这个中断,导致主程序不能继续运行。

来源:网络(本文仅供学习参考使用,版权归原作者所有)

围观 957

页面

订阅 RSS - 中断