借力多核MCU/编码器 PMSM助工业机器人精准位移

kelly的头像
kelly 发布于:周三, 09/14/2016 - 14:38 ,关键词:

永磁同步马达(PMSM)通常用于高效能、低功耗的马达驱动。高效能马达控制的特征为可在整个速度范围内平稳旋转,零速度时有完全的扭矩(Torque)控制,且能达到快速加速和减速。为了达到上述要求,PMSM采用向量控制技术,该技术通常还被称为磁场定向控制(FOC)技术。向量控制算法的基本思路是将一个定子电流分解为磁场生成的分量和扭矩生成的分量,分解后,这两个分量能单独进行控制;而马达控制器(亦即向量控制控制器)的结构几乎与一个他励直流马达(DC Motor)相同,这样便简化了PMSM的控制程序。

扭矩生成定理

PMSM的电磁扭矩分别由定子及转子两个磁场交互作用生成。定子磁场由磁通量或定子电流表示,转子磁场由恒定的永久磁铁(弱磁情况除外)的磁通量表示。若将这两个磁场比喻为两个条形磁铁,则可以想象当磁铁互相垂直时,吸引/排斥磁铁的力是最大的。这意味着,设计人员应该要依此定理控制定子电流,也就是要创建垂直于转子磁场的定子向量。转子旋转时,也就必须更新定子电流,使定子磁通向量与转子磁铁保持90度垂直。

当定子和转子磁场垂直时,内嵌式PMSM的电磁扭矩方程式为:扭矩=33ppλPMIqs(pp为磁极对的数目,λPM为永久磁铁的磁通,Iqs则为交轴的电流幅值。)当磁场垂直时,电磁扭矩与q轴电流的幅值成正比。微控制器(MCU)须调节定子相电流强度,同时调节相位/角度,但这不像直流马达控制那样容易达成。

简化电流控制 创造最佳FOC效能

直流马达控制很简单,因为其所有受控的量都是稳定状态的直流电(DC)值,而且电流相位/角度受机械换向器的控制;但在PMSM领域中,要如何才能实现磁场定向控制技术?

DC值/角度控制

首先,须知道转子的位置,其常常与A相有关。我们可使用绝对位置传感器(如解析器)或相对位置传感器(如编码器),并处理所谓的「对齐」。对齐过程中,将转子与A相轴线对齐,如此一来A相轴线与直轴(励磁分量所在轴)就对齐。在这种状态中,转子位置设为0;亦即,构建静态电压向量,令所需的电压在d轴,位置设为0,这导致定子磁场吸引转子,并将直轴与A相轴线对齐。三相量可通过Clarke变换转换成等效的二相量。接着,再透过Park变换将两相静止参照系中的量转换成两相旋转坐标系中的直流量,这期间要用到转子位置。

转子的电气位置是转子的机械位置再乘以极对数pp。经过一系列控制之后,设计人员应当在马达端子上生成三相交流电压,因此所需/生成电压的直流值应当通过反Park/Clarke变换进行转换。

幅值控制

所有变量现在都是直流值,可以轻松控制,但是要如何控制它们的幅值呢?对于幅值控制,建议使用级联结构的PI控制器,且可以像直流马达那样控制许多状态量,如相电流(扭矩环)、转速和位置。

FOC步骤

首先,须测量马达的相电流,并使用Clarke变换将它们转换为两相系统,及计算转子位置角;接着,再使用Park变换将定子电流转换为d、q坐标系统上;此时,定子电流扭矩(isq)分量和磁通量(isd)生成分量由控制器单独控制;最后,透过逆向Park变换,输出定子电压空间向量从d、q坐标系转换回两相静止坐标系,并使用空间向量调制,生成三相输出电压。

无传感器控制

设计人员需要转子的位置信息,才能高效地控制永磁同步马达,然而在一些应用中于传动轴上安装转子位置传感器,会降低整个系统的耐用性和可靠性。因此,设计人员的目标不是使用这个机械传感器直接测量位置,而是利用一些间接的技术估算转子位置。

低速时,须高频率注入或开环启动(效率不高)等特殊技术来启动马达并使之达到某一个转速,在这个转速下对于反电动势观测器来说,反电动势已足够。通常,5%的基本速度足以使无传感器模式正常运行。

中/高速时,使用d/q参照系中的反电动势观测器。内部脉宽调变(PWM)频率和控制环路频率必需够高,才能获得合理数量的相电流和直流母线电压的样本。反电动势观测器的计算要求乘累加、除法、正弦/余弦(sin/cos)、开方等数学计算,适合使用基于ARM内核的Kinetis MCU或Power Architecture系列的数字讯号控制器(DSC)。

弱磁控制

超过马达额定转速的作业要求,PWM逆变器提供的输出电压高于直流母线电压所限制的输出能力。要克服速度限制,可实施弱磁算法。负的d轴给定电流将提高速度范围,但由于定子电流的限制,可得到的最大扭矩会相对地降低。在同样的直流母线电压限制下,控制d轴电流可以起到弱化转子磁场的效果,这降低了反电动势电压,允许更高的定子电流流入马达。

文章来源: 新电子

围观 268